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Introduction

This textbook is for the IA Formal Methods lectures on Sets, Relations and Probability.
It covers the elements of set theory (including relations and functions) and probability
theory.

The book contains a number of exercises, which are optional although recommended.
The exercises are designed for the reader to check that they understand the concepts and
ideas which have been introduced in the relevant section. Please note that the exercises
will not be discussed in the additional logic classes run by colleges, although the book
does contain a solutions booklet.

If you spot any errors, typographical or otherwise, please send them to Alex Roberts at
ajr207@cam.ac.uk.

Acknowledgements

This textbook draws on parts of Arif Ahmed’s handouts for his Formal Methods lectures,
which are available on his website. In particular, the chapter on probability draws sub-
stantially on Arif’s last four handouts. Be warned that there are some small differences
between Arif’s handouts and this textbook. The most significant difference is that in this
textbook relations are identified with their extensions for reasons of convenience.

Thanks are due toAnnina Loets for proof-reading some exercises and toOxanaZhigalova
for bringing some typos to our attention.

https://www.phil.cam.ac.uk/people/teaching-research-pages/ahmed/ahmed-page


1 Sets

We speak of collections all the time: this university consists of its colleges, faculties, etc;
this textbook consists of its pages; the philosophy faculty library consists of its books.
We speak of collections, aggregates, classes, sets. This part of the course will first be
concerned with what these sets are. As well as being an important philosophical notion
in itself, what purposes have sets been put to?

The first motivation is mathematical. At the end of the 17th century, Newton and Leibniz
discovered the calculus (analysis). This is the study of real-valued functions of a real
variable. Real numbers are rather different to the other sorts of number – they are infinite
objects. And, in its original form, the calculus made use of the notion of ‘infinitesimal’.
Generally, the notion of the infinite was becoming more central to mathematics. One
crucial use of set theory is in taming the infinite.

Set theory has also come to serve a crucial, foundational role for mathematics. We would
very much like our mathematical theories – of arithmetic, geometry, and so on – to be
consistent. Virtually every mathematical theory of interest can be shown to be consistent
if set theory is. So the consistency of set theory is of considerable philosophical interest.

There are other, more mundane, motivations. First, sets can provide a neat way of dis-
cussing semantics and metalogic. For example, what does the predicate ‘is red’ refer to?
We might think redness, but what sort of object could that be? Rather, some have pre-
ferred to say that it refers to the set of red things. Similarly for metalogic: we might want
to discuss the soundness and completeness of a proof system for a logic. How can we do
this? One helpful way is to compare the set of logical truths to the set of theorems and
ask if they are the same.

1.1 Collections

Intuitively, a set of things is just a collection of things considered as a single object, for
example the set of coins in my pocket. However, unlike the coins in my pocket, the set
of those coins in my pocket is not a physical object. For the purposes of this course, we
shall treat it—and indeed all sets—as abstract objects.

You can think of a set as an abstract shopping bag into which you can put all sorts of
things. These can be concrete things like Jack and Jill. Or they can be abstract entities like
the natural numbers from 0 to 10. They can also be completely unrelated like the number
2, the concept of humility and the Queen’s Diamond Jubilee.

We will use a specific notation for describing sets. If there are the individuals Jack and
Jill, then the set containing exactly Jack and Jill is written as {Jack, Jill}. We shall also say
that Jack and Jill are members of {Jack, Jill}.

In fact, we will use a special notation to express membership claims. The claim that Jack
is a member of {Jack, Jill} will be written as Jack ∈ {Jack, Jill}. More generally, when x
is any individual and S is any set, the expression x ∈ S is to be understood as the claim
that x is a member of S. If x is any individual and y is not a set, then the claim x ∈ y will
be ill-formed.

The order of the objects in a set is insignificant. So, for example: {Jack, Jill} = {Jill, Jack}.
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Sets can also bemembers of sets. So the set {{Jack, Jill}, Jane} is a set. It has twomembers:
the object Jane and the set {Jack, Jill}. The objects Jack and Jill are members of {Jack, Jill}:
Jack ∈ {Jack, Jill} and Jill ∈ {Jack, Jill}. But they are not members of {{Jack, Jill}, Jane}:
Jack 6∈ {{Jack, Jill}, Jane} and Jill 6∈ {{Jack, Jill}, Jane}.

1.2 Empty Set

I said that a set of things is just a collection of things, but there is one set which is a
collection of no things whatsoever. We call this the empty set and denote as either {} or ∅.
(In some texts, you might see it referred to as the null set.)

It will be very mathematically convenient to have the empty set at our disposal, even if it
is slightly at odds with our ordinary notion of a collection. For instance, I can’t claim to
have a collection of priceless artworks if I have none whatsoever.

Exercises for 1.1-1.2

1. Are the following claims true, false, or ill-formed?1

a. 0 ∈ {0, 1, 2}

b. 0 ∈ {1, 2}

c. 0 ∈ {{0}}

d. 0 ∈ 0

e. 0 ∈ ∅

2. Write down the following claims in our notation. Are the they true, false, or ill-formed?

a. The number 2 is a member of the set containing exactly Jack and Jill.

b. The empty set is a member of the number 2.

c. The number 2 is a member of the set containing exactly the empty set and the num-
ber 2.

1.3 Extensionality

Above, I presumed that there is a unique set: the empty set. What justifies this presump-
tion?

Our notion of a set is governed by an important principle: the principle of extensionality.

Extensionality. If a set S and a set S′ have the exact same members, then they are iden-
tical.

This principle justifies my presumption that there is a unique empty set. I can use Ex-
tensionality to reason as follows. Suppose S is an empty set and S′ is also an empty set.
Then, clearly they have exactly the same members, namely none. Therefore, by Exten-
sionality they are one and the same set. Thus, the empty set is unique.

1Note: in some textbooks, you might find that numbers like 2 are defined to be certain sets. That is not the
approach taken in what follows.
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I can also write a version of Extensionality in the language of first-order logic with iden-
tity which has been enriched with our predicate of set membership ‘∈’ and the predicate
‘Set’, understood informally as the predicate ‘is a set’.

Extensionality. ∀x∀y((Set(x) ∧ Set(y))→ (∀z(z ∈ x↔ z ∈ y)→ x = y))

Notice that, more generally, Extensionality gives us a means of proving that two sets are
identical. We must establish two conditionals (when x and y are sets):

1. ∀z(z ∈ x→ z ∈ y)

2. ∀z(z ∈ y → z ∈ x)

1. and 2. allow us to conclude that some object z is a member of x if, and only if, it is a
member of y. By Extensionality, we can then conclude that x = y.

Exercises for 1.3 (∗ = greater difficulty)

1. Why is the set {The Prime Minister on 10 February 2020, Jeremy Corbyn} identicalwith
the set {Boris Johnson, Jeremy Corbyn}? What does this tell us about how we describe
sets?

2. Use Extensionality to argue that there is only one set which contains exactly the empty
set.

3.∗ If we enrich the language of first-order logic (with identity) with the predicate ‘∈’ and
the name ‘∅’ for the empty set, then we can define the predicate ‘Set’. How?

1.4 Notation for Describing Sets

It is helpful to introduce some more general notation for describing sets instead of just
listing their members in between curly brackets. After all, the set of natural numbers (the
numbers 0, 1, 2, ...) is infinite, so we can’t simply list its members on our page.

Our notation will permit us to define a set in terms of a condition which all and only
its members satisfy. For example, instead of listing all of the natural numbers, we shall
define the set of natural numbers as the set of all things which meet the condition of being a
natural number.

Notation. The expression ‘{x : x is a natural number}’ denotes the set of natural num-
bers.

Likewise, {x : x is red} is the set which contains all and only the red things. To be clear,
the notationwill often be amatter of convenience: {2} = {x : x is an evenprimenumber }.
These are twoways of naming the very same set. Nothing hinges onwhich onewe choose.
Generally, we’ll write {x : φ(x)} for the set of φs. Indeed, I can now redescribe some of
the sets we considered previously. For example, {Jack, Jill} = {x : x = Jack ∨ x = Jill}.

As an aside, when a set contains one member, like the set {Jack} does, we shall call it a
singleton. Clearly, everything is the one and only member of its singleton. For exam-
ple, the singleton of Donald Glover is {Donald Glover}. Importantly, Donald Glover
6= {Donald Glover}. Why? By Leibniz’s Law, since Donald Glover writes sitcoms and
sets can’t write sitcoms!
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Sets also have singletons, so the singleton of {Donald Glover} is {{Donald Glover}}.
Again, {Donald Glover} 6= {{Donald Glover}}. Why? They don’t have the same mem-
bers: Donald Glover is a member of the former but not of the latter. By Extensionality,
therefore, these are different sets. Again, nothing odd is going on here: continuing the
shopping bag analogy, a singleton is a shopping bag with just one thing in it. We could
then put this bag inside another, and we’d end up with a different bag, extensionally
speaking.

Exercises for 1.4

1. Using our notation, write down the claim that the number zero is not a member of the
set of all humans.

2. Using our notation, redescribe the set {∅}.

3. Using our notation, redescribe ∅.

4. Write out in our formal language the claim that everything is the one and onlymember
of its singleton.

1.5 Subsets and Supersets

Some sets bear interesting relations to another. For example, every member of {Jack} is
also amember of {Jack, Jill}. When this occurs, we say that {Jack} is a subset of {Jack, Jill}.

More precisely, a set S is a subset of a set S′ iff every member of S is a member of S′.
When S is a subset of S′, we write S ⊆ S′. We can also define this relation in our formal
language.

Definition. (Subset) S ⊆ S′ := ∀x(x ∈ S → x ∈ S′)

It is absolutely crucial that the subset relation is not confused with the membership re-
lation. Membership is the relation that holds between an object (possibly a set) and a set.
Subsethood is a relation that holds between two sets. It holds between sets S and S′ just
when every member of S is also a member of S′. For example, the set of footballers F is
a subset of the set of sportspeople S, since every footballer is also a sportsperson: F ⊆ S.
Notice also that every set is a subset of itself. However, when S ⊆ S′ and S 6= S′, S is a
proper subset of S′.

Definition. (Proper Subset) S ⊂ S′ := S ⊆ S′ ∧ S 6= S′

For example, since there are also sportspeople who are not footballers, such as snooker
players, the set of footballers F is a proper subset of the set of sportspeople S.

For another example, consider the set of all triangles A and the set of all trilateral shapes
L. Here, A ⊆ L but of course L ⊆ A. When this holds, we can conclude A = L by
Extensionality. This is of course what we’d expect. We’ve said that one test for whether
two setsS andS′ are identical is whether it is the case that everymember ofS is amember
of S′ and vice versa. We now know this equivalent to saying that S ⊆ S′ and S′ ⊆ S.

One helpful fact to bear in mind is that ∅ is a subset of every set. This is because it is
vacuously true that every member of ∅ is a member of any given set as ∅ has no members
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at all.

It is also helpful to have a term for the converse of the subset relation: the superset rela-
tion.

Definition. (Superset) S ⊇ S′ := S′ ⊆ S

In other words, when S ⊇ S′ every member of S′ is a member of S.

Worked Example. Show that if S ⊂ S′ then it is not the case that S′ ⊆ S.

Strategy. To prove this conditional, I will use a technique known as conditional proof.
This is an analogue of the natural deduction introduction rule for the conditional, except
in natural language. It allows me to suppose the antecedent of a conditional, prove its
consequent as a consequence, and then conclude that the conditional is true.

Proof. First, let us suppose that S ⊂ S′. By the definition of proper subset, it follows that
S ⊆ S′ ∧ S 6= S′. In other words, every member of S belongs to S′ but, since S 6= S′,
there is some member of S′ which does not belong to S. As a result, S′ is not a subset of
S. Therefore, by our informal rule of conditional proof, if S ⊂ S′ then it is not the case
that S′ ⊆ S. �

Exercises for 1.5

1. Define the proper superset relation.

2. Show that if S1 ⊆ S2 and S2 ⊆ S3, then S1 ⊆ S3.

3. Let A = {0, 1} and B = {0, 1, 2, 3}. Are the following claims true, false, of ill-formed?
a. A ⊆ B

b. A ⊂ B

c. A ∈ B

d. 0 ∈ A

e. 0 ⊆ B

1.6 Union and Intersection

There are various algebraic operations on sets that are crucial to understand.

Consider the sets {Jack} and {Jill}. One natural thought is that there should a set which
results frompooling together exactly themembers of each set. Indeed, there is: {Jack, Jill}.
The set {Jack, Jill} is the union of the sets {Jack} and {Jill}, and we shall denote it as fol-
lows: {Jack} ∪ {Jill}. Venn diagrams provide a helpful way of thinking about this:
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Definition. (Union) S ∪ S′ := {x : x ∈ S ∨ x ∈ S′}

For another helpful example, consider the sets {0, 1, 2} and {2, 3, 4}. {0, 1, 2}∪{2, 3, 4} =
{0, 1, 2, 2, 3, 4} = {0, 1, 2, 3, 4}. The definition of union delivers the first identity; Exten-
sionality delivers the second. There is an obvious analogy between union and (inclusive)
disjunction. To check that you understand the notion of union, it might help to convince
yourself of the following fact: every set S is a subset of its union with any set S′ (i.e.
S ∪ S′).

There is another algebraic operation on sets that is important to understand too. Consider
the sets {Jack, Jill} and {Jill, Jane}. One natural thought is that there should a set which
results from taking the members which are common to these sets. Indeed, there is: {Jill}.
The set {Jill} is the intersection of the sets {Jack, Jill} and {Jill, Jane}, and we shall denote
as follows {Jack, Jill} ∩ {Jill, Jane}. Again, Venn diagrams are helpful for visualising this
operation.

Definition. (Intersection) S ∩ S′ := {x : x ∈ S ∧ x ∈ S′}

For example, if A is the set of all animals and C is the set of all chimpanzees, the set
A ∩ C is the set of all things that are both animals and chimpanzees, namely the set of
all chimpanzees. There is an obvious analogy between intersection and conjunction. To
check that you understand the notion of intersection, it might help to convince yourself
of the following fact: the intersection of any sets S and S′ is a subset of S (and of S′).

Worked Example. Show that ((S ∩ S′) ∪ S) = S.

It’s important that you set out your proofs of certain set-theoretic facts in an elegant man-
ner. To demonstrate a properly presented proof, I’ll set out a model answer for this ex-
ample. I’ll begin by sketching the idea of the proof to you. This will not be the official
proof, but it’ll contain all the core ideas needed to present the proof properly.

Sketch. x is a member of ((S ∩ S′) ∪ S) iff either x is a member (S ∩ S′) or x is a member
of S. If the latter, then clearly x is a member of S. If the former, then x is a member of S
and S′: so it must be a member of S.

Proof. x ∈ ((S ∩ S′) ∪ S) ↔ x ∈ (S ∩ S′) ∨ x ∈ S Def. ∪

↔ (x ∈ S ∧ x ∈ S′) ∨ x ∈ S Def. ∩

↔ x ∈ S PL

The final step is justified by propositional logic (PL): clearly, the statement ((A∧B)∨A)↔
A is a tautology of propositional logic. �

When some sets have no members in common, we say that they are disjoint. In fact, we
can define this notion in terms of intersection.
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Definition. (Disjointness) S is disjoint from S′ := (S ∩ S′) = ∅

For example, if A is the set of all animals andO is the set of all oranges, then A and O are
disjoint, since A ∩O = ∅.

Exercises for 1.6

1. Show that S ∪ S is just S.

2. Show that S ∩ ∅ is just ∅.

3. Show that if S and S′ are disjoint and S′ is non-empty, then S ⊂ (S ∪ S′).

4. Show that Show that (S1 ∪ (S2 ∩ S3)) = ((S1 ∪ S2) ∩ (S1 ∪ S3))

1.7 Complement

Consider the sets {Jack, Jill} and {Jack}. One natural thought is that there should be a set
which results from removing the only member of {Jack} from {Jack, Jill}. Indeed, there
is: {Jill}. The set {Jill} is the complement of {Jack} in {Jack, Jill}.

Definition. (Complement) S − S′ := {x : x ∈ S ∧ x 6∈ S′}

As before, Venn diagrams are helpful for visualising this operation.

With the notions of union, intersection, and complement, one can now prove various
identities between different sets.

Worked Example. Show that ((S ∩ S′) ∪ (S − S′)) = S.

Proof. x ∈ ((S ∩ S′) ∪ (S − S′)) ↔ x ∈ (S ∩ S′) ∨ x ∈ (S − S′) Def. ∪

↔ (x ∈ S ∧ x ∈ S′) ∨ x ∈ (S − S′) Def. ∩

↔ (x ∈ S ∧ x ∈ S′) ∨ (x ∈ S ∧ x 6∈ S′) Def. −

↔ x ∈ S PL

The last step is justified by the tautology of propositional logic ((A∧B)∨ (A∧¬B))↔ A.
�

Exercises for 1.7

1. Show that (S − (S ∩ S′)) = S − S′.

2. Show that ((S ∪ S′)− (S ∩ S′)) = ((S − S′) ∪ (S′ − S)).

3. Show that ((S ∪ S′)− (S ∩ S′)) = (S ∪ S′) when S and S′ are disjoint.
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1.8 Power sets

We have defined the subset relation on sets. We’ve also seen that every set has at least
one subset: itself. However, every non-empty set will have multiple distinct subsets. For
example, any singleton set, such as {Jack}, has two subsets: {Jack} and ∅. One natural
thought is that for any given set S, there should be a set which includes all and only the
subsets of S. We shall call this the power set of S, and we shall denote it as P(S).

Definition. (Power set) P(S) := {x : x ⊆ S}

For example, consider the set {a, b, c}. Its subsets are: ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},
{a, b, c}. The set of all of these subsets, the power set of {a, b, c}, is therefore:

P({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Tip 1. Sometimes youmight be asked to calculate the power set of a given set. To double-
check you have calculated the power set properly, it is helpful to bear in mind that if a set
has n members, then its power set has 2n members. For example, the set {a, b, c} has 3
members, so (as you can verify) P({a, b, c}) has 23 = 8members.

Tip 2. Since the empty set is a subset of every set, it is a member of every power set.
Likewise, since every set is a subset of itself, the power set of a given set S always includes
S itself as a member.

Worked Example. Show that if P(S) = P(S′) then S = S′.

Strategy. To prove this, I’ll use a technique called proof by contraposition. We know that in
propositional logic the conditional p→ q is logically equivalent to¬q → ¬p. To introduce
some terminology, the conditional ¬q → ¬p is the contrapositive of p → q. Proof by
contraposition is when a conditional is proved by proving its contrapositive.

Proof. In the example at hand, I am asked to prove a conditional: if P(S) = P(S′) then
S = S′. I’ll do so by just proving the contrapositive of this conditional: if S 6= S′, then
P(S) 6= P(S′). So suppose that S 6= S′. By Extensionality, there is something x in one
set but not the other. Thus, {x} will be in the power set of one set and not in the power
set of the other set. Hence, P(S) 6= P(S′).

Exercises for 1.8

1. Is any set its own power set?

2. Define P(S) ∪ S using our notation for describing sets.

3. Show that P(S ∩ (S − S)) ⊆ P(S′).

1.9 Pairs and Products

We’ve said that order doesn’t matter to sets. Consider two-membered sets. We could
call these unordered pairs, since the order of the members doesn’t matter: {a, b} = {b, a}.
Sometimes we do care about order, though. For example, if I tell you that Jane and Ian
finished first and second in a race, respectively, I don’t simply mean that the members of
{Jane, Ian} finished first and second: I mean that Jane won and Ian was second.
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To respect this, we introduce the idea of an ordered pair. The ordered pair 〈a, b〉 6= 〈b, a〉.
For ordered pairs, 〈a, b〉 = 〈c, d〉 if, and only if, a = c and b = d. In fact, we shall just
define ordered pairs in terms of sets.

Definition. (Ordered pair) 〈a, b〉 = {{a}, {a, b}}

Notice that 〈a, a〉 6= {a, a} since 〈a, a〉 = {{a}, {a, a}}. For notational convenience, how-
ever, we shall stipulate that the symbol ‘〈a〉’ is just alternative notation for ‘{a}’.

Now that we have the definition of an ordered pair, we can of course go further. If we
want to order three objects, we can use an ordered triple, 〈x, y, z〉. For four objects, we can
use an ordered quadruple, 〈w, x, y, z〉. Generally, if wewant to order n-many objects, we can
use an ordered n-tuple, 〈x1, ..., xn〉. In fact, we shall just define ordered in terms of ordered
pairs.

Definition. (Ordered n-tuple) 〈x1, ..., xn〉 = 〈〈x1, ..., xn−1〉, xn〉

If S and S′ are sets, then it is natural to think that there should be a set of all the ordered
pairs whose first component is taken from S and whose second component is taken from
S′. We shall call this the Cartesian product of S and S′, and shall denote it as S × S′.

Definition. (Cartesian Product) S × S′ = {〈x, y〉 : x ∈ S ∧ y ∈ S′}

Worked Example. Let A = {0, 1} and B = {1, c, d}. Calculate their Cartesian product.

Answer. A×B = {〈0, 1〉, 〈0, c〉, 〈0, d〉, 〈1, 1〉, 〈1, c〉, 〈1, d〉} �

We can also talk about the Cartesian product of a set and itself. In this case, we say that
the Cartesian product of A and itself is A2.

Exercises for 1.9

1. Let A = {a}, B = {b, c}, and C = {d}. Calculate the following.
i. A×B

ii. P(A)×B

iii. P(A× C)

2. Calculate ∅2.

3. Define the set (A × B) ∩ (A × A). Assuming A and B are non-empty, under which
conditions is (A×B) ∩ (A×A) non-empty?

1.10 Cardinality

Intuitively, we can understand the idea that a given set has a size. It is natural to measure
the size of a set in terms of the number ofmembers it has. To introduce some terminology,
we shall call this the cardinality of a set. For example, if S = {a, b} then the cardinality
of S is 2, as it has two members: a and b. It will be helpful to have some notation for
expressing the cardinality of a set, so when S is a set |S| is the cardinality of S, which will
always be a number.
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Definition. (Cardinality) The cardinality of a set is the number of members it has.

Of course, there are different sets with one and the same cardinality. For example, the
set {Boris, Sajid} is different from the set {Boris,Rishi}, but the cardinality of both is 2.
In terms of our notation: |{Boris, Sajid}| = |{Boris,Rishi}| = 2.

Since some of the sets we will consider in this course will contain numbers as members
themselves, it’s important not to get confused between membership and cardinality. For
instance, consider the set which contains exactly the number 2, {2}. The cardinality of
this set (i.e. |{2}|) is the number 1, since {2} is a singleton set: it contains exactly one
member. So, |{2}| 6∈ {2}.

One of the powerful features of contemporary set theory is that it permits not just finite
sets, but also sets with infinite cardinality: sets which contain infinitely many members.
In fact, we’ve already seen one example of an infinite set already: the set of natural num-
bers (recall that the natural numbers are the numbers 0, 1, 2, ...). One of the fascinating
facts that one can prove in contemporary set theory is that there are different infinite sets
with different cardinalities: in intuitive terms, this may be understood as the claim that
some infinite sets are bigger than other infinite sets.

Exercises for 1.10

1. Let A = {1, 2}. Calculate the following.

i. |A− {2}|

ii. |A× (A− {2})|

iii. |P(A)|

2. When n is a non-zero natural number, show that |{1, ..., n}| ∈ {1, ..., n}. Deduce that
there’s a particular non-zero natural number such that the cardinality of its singleton set
is a member of its singleton.

1.11 Comprehension & Russell’s Paradox

So far, we’ve used lots of different sets in the examples and exercises. We’ve used the set of
natural numbers, the set of the current Prime Minister and the Leader of the Opposition,
and the set containing only the set containing Donald Glover. This prompts a natural
question: for any things, is there a set containing exactly them?

Wemight try tomake this question a littlemore precise: if we specify any conditionwhat-
soever, is there a set containing exactly the things meeting that condition? For example,
we have simply assumed there is a set of thingsmeeting the condition being a natural num-
ber. But what about the condition being a left shoe of Donald Trump or a right shoe of Bertrand
Russell, or any condition whatsoever? More generally, for any condition φ which we can
express, is there a set {x : φ(x)}?

Here, φ is also allowed to be a property of sets, such as having 4 or more members. The
sorts of things with members are sets, so this set will include the set of members of the
Beatles, the set of natural numbers, the set of pages in Principia Mathematica, the set of
Oscar-winning films, and so on.
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In our formal language, we can state this ‘naïve’ principle that for any condition we can
express there is a set consisting of exactly those things which meet that condition.

Naïve Comprehension. ∃y∀x(x ∈ y ↔ φ(x))

Think about both directions of this principle: it tells us that there is a set ywhich contains
only things that meet condition φ (the left-to-right direction), and contains every thing
which meets condition φ (the right-to-left direction).

The reason why this principle is known as Naïve Comprehension is because the guiding
idea, that for any condition there is a set of things meeting exactly that condition, is just
that: naïve. As it turns out, the principle of Naïve Comprehension is inconsistent, as the
following famous argument shows.

Argument. Consider the condition of being non-self-membered. ByNaïve Comprehension,
this defines the set of all sets that are not members of themselves. That is, it defines the
set S = {x : x 6∈ x}. Now, is S a member of itself? Suppose that it is, i.e. S ∈ S. Then
by the membership condition for S, S is not a member of itself, i.e. S 6∈ S. Now suppose
that S is not a member of itself, i.e. S 6∈ S. If S 6∈ S then S meets the condition for being a
member of itself: being non-self-membered. So, S ∈ S. However, we’ve now argued using
basic propositional logic and the existence of S that S ∈ S ↔ S 6∈ S, which is an obvious
contradiction. So there is no set of all sets which are not members of themselves.

This argument is due to Bertrand Russell and it is known as Russell’s Paradox. Here’s a
fictional analogy to help you understand the style of reasoning used in the argument:

In a village, there is a barber who shaves all and only those people in the vil-
lage who do not shave themselves. Does the barber shave themselves? Well,
suppose that he does. Then, the barber must be a person who does not shave
himself, since he shaves all and only those people in the village who do not
shave themselves. So, suppose that the barber doesn’t shave himself. Well,
then the barber meets the condition of being exactly one of those people who
the barber shaves! So, using the description of the fictional scenario, we’ve ar-
gued using basic propositional logic that the barber shaves himself if and only
if he doesn’t. Hence the fictional scenario we’ve described must be logically
inconsistent.

1.12 Separation & The Universal Set

Given that Naïve Comprehension is inconsistent, we can’t use it in our theory of sets.
However, philosophers, logicians andmathematics have proposed a weaker principle for
set formation which can be used to articulate a consistent theory of sets. We will not be
making heavy use of this principle in this course, but understanding it will help explain
one important fact about sets.

One natural way to weakenNaïve Comprehension, one might think, is to add in an extra
condition for set formation. Instead of thinking, naïvely, that for any condition we can
express there is a set containing exactly those things meeting that condition, a different
thought is that for any condition we can express and any set we already know to exist, there
is a subset of that set which contains exactly those things meeting that condition.
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For example, since the set S = {Boris,Rishi} exists, then there is the set of all and only the
members of S which are currently Prime Minister, i.e. {Boris}. Intuitively, the thought is
that given any set and any condition, we can separate the items of that set which meet that
condition into a set themselves. For another example, take the set of natural numbers
{0, 1, 2, 3, ...} and the condition of being an odd number. This condition can be used to
separate that set into the set of odd numbers {1, 3, ...}. In our formal language, we can
state this principle of separation.

Separation. ∀z∃y∀x(x ∈ y ↔ (x ∈ z ∧ φ(x)))

In contrast to Naïve Comprehension, Separation requires the things which meet con-
dition φ to form the set y to already belong to a set z. Intuitively, then, the principle just
separates the φs in z into a possibly new set y.

Here is the crucial fact about sets and Separation you need to know for this course: if
there is a set of absolutely everything then Separation is equivalent to Naïve Compre-
hension. In other words, if there is a universal set, then Separation collapses intoNaïve
Comprehension. The reason for this straightforward: if there is a set of everything, then
separating the φs of that set into a set will just amount to forming the set of all and only
the φs.

Due to this crucial fact, in standard set theory there is no universal set. That is there is
no set which contains absolutely everything there is. This will be important to keep in
mind, as it will explain why the universal set is absent in what follows.

1.13 References & Further Reading

For further reading about Russell’s Paradox and other exercises, see the first two chapters
of Enderton, H. (1977) Elements of Set Theory. London: Elsevier. Note that some of the
material in those chapters (and definitely the remainder of the book) goes beyond the
level of this course. See also the first chapter of Steinhart, E. (2009)More Precisely. Ontario:
Broadview.

12



2 Relations

Many philosophical debates concern particular relations between individuals, events, sit-
uations, or acts. For example, ethicists might debate whether one situation is better than
another situation, morally speaking. Metaphysicians might debate whether one event
causally depends on another. Similarly, epistemologists might debate whether one way of
revising one’s beliefs in reaction to new evidence is more rational than an alternative way
of doing so.

When philosophers are interested in such delicate questions about relations between cer-
tain things, they usually identify certain structural features of the relations that are per-
tinent to the discussion. For example, consider the following structural features of some
of the above relations.

1. If situation s1 is better than situation s2, and situation s2 is better than situation s3,
then s1 is better than s3.

2. If effect e causally depends on cause c, then c does not causally depend on e.

3. No event causally depends on itself.

Very often in philosophy it is useful to get clear on which structural features of a relation
are agreed on by all participants to the dispute, and which, if any, are being contested. In
this section of the course, wewill use our set theory to provide a framework for discussing
relations and properties of relations more rigorously.

2.1 Properties and Extensions

You are familiar with the concept of a predicate from first-order logic.

‘ is a dog’

‘ is a philosopher’

One-place predicates like these express properties. For instance, ‘ is a dog’ expresses
the property of being a dog. Crucially, properties have extensions: the set of all and only
the things which possess that property. For example, the extension of being a dog is the
set of all and only the dogs.

Sometimes, there might even be different properties which are coextensive: they share the
same extension. For example, the properties of being a naturally featherless biped and being
human have the exact same extension: they apply to precisely the same objects. But it is
natural to think that they are different properties: after all, surely it is possible for there
to be a naturally featherless biped which is not human.

Nevertheless, in what followswe shall identify properties with their extensions. Thus,
since the set {x : x is a dog} is the extension of the property being a dog, we shall identify
being a dog with the set {x : x is a dog}. As a consequence, in our system two properties
are identical when they are coextensive. For example, the properties of having three angles
and of having three sideswill be treated as identical: since {x : x has three angles} = {x : x
has three sides}.
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There are very deep philosophical questions about how to individuate properties, if not
by the criterion of extensionality. However, it will be mathematically very convenient
(and standard) to work under the idealisation that properties are extensional.

Recall that predicates can have more than one gap, like in the following examples:

‘ 1 loves 2’

‘ 1 is taller than 2’

‘ 1 is between 2 and 3’

‘the distance from 1 to 2 equals the distance from 3 to 4’

These polyadic predicates express relations. For example, ‘ 1 loves 2’ expresses
the relation of loving and ‘ 1 is between 2 and 3’ expresses the relation of
betweenness.

Just as properties have extensions, so do relations. However, the extension of a relation
can’t be a set of objects because relations don’t apply to objects individually. Instead,
two-place relations like loving apply to pairs of objects. For instance, the loving relation
applies to the pair of objects, Romeo and Juliet. One might thus think that the extension
of a relation like loving is just a set of pairs, that is of two-membered sets of objects.

Unfortunately, however, there is the possibility of unrequited love. It might be that Jack
loves Jill, but Jill does not love Jack back in return. But if we simply treated the ex-
tension of loving as a set which includes the pair {Jill, Jack} it would also include the
pair {Jack, Jill} = {Jill, Jack}. So the extension of loving should not consist of merely
unordered pairs.

For another example, we want the relation shorter than to be distinct from the relation
taller than, but the same pairs of objects would fall under both according to the suggested
approach. For example, Kylie Minogue is shorter than Nick Cave so the set {Minogue,
Cave} would fall under the first. But the set {Cave, Minogue} would fall under the sec-
ond. The problem, of course, is that {Minogue, Cave} = {Cave, Minogue}.

The solution is to use ordered pairs as the members of extensions of relations like loving
and shorter than. Remember that we denote these special types of pairs using angular
brackets. So, for example, the orderedpair ofMinogue andCavewill bewritten as follows
〈Minogue, Cave〉. Remember also that the main principle governing ordered pairs is the
following.

Order Principle. If x 6= y, then 〈x, y〉 6= 〈y, x〉

As a consequence of this principle, 〈Minogue, Cave〉 6= 〈Cave, Minogue〉. So, we can
take the extensions of relations like loving and shorter than to be sets of ordered pairs.
In particular, the extension of shorter than is {〈x, y〉 : x is shorter than y}. Likewise, the
extension of loving is {〈x, y〉 : x loves y}. Likewith properties,we shall identify relations
with their extensions.

Just as properties like unicorn can have empty extensions, so can relations, like shorter
and taller than. We call these empty relations. In fact, there is only one of them, by our
assumption of extensionality.
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The relations of loving and shorter than are binary relations: they apply to pairs of objects.
More carefully, we define the notion of a binary relation as follows.

Definition. (Binary relation) A set is a binary relation iff it contains only ordered pairs.

Tip. Be clear on the fact that a binary relation is a set of ordered pairs, and not itself an
ordered pair.

In addition to binary relations, there are also ternary relations, like betweenness, and also
quarternary relations like the notion of equidistance used in the example above. More gen-
erally, for any finite n (where n ≥ 2) there are n-ary relations: relations which apply to
sequences of n objects. Remember that we call such sequences n-tuples. For instance, the
sequence 〈1, 2, 3〉 is a 3-tuple, and the sequence 〈Jack, Jill〉 is a 2-tuple whilst also being
an ordered pair. Moreover, just like ordered pairs, the order of n-tuples matter. So, for
example, the ordered 3-tuple 〈1, 2, 3〉 is different from the ordered 3-tuple 〈2, 1, 3〉.

Definition. (n-ary relation) A set is an n-ary relation (forn ≥ 2) iff it contains only ordered
n-tuples.

Notice that according to this definition the empty relation, whose extension is just the
empty set, is an n-ary relation for any n ≥ 2: it is vacuously true that everything which
the empty set contains is an ordered n-tuple, since it doesn’t contain anything at all.

Notation. Since we are identifying properties and relations with their extensions, we can
introduce some useful notation. For instance, whenL is the loving relation, wemaywrite
〈Romeo, Juliet〉 ∈ L for the claim that Romeo loves Juliet.

Exercises for 2.1

1. If x, y ∈ S, then specify a set S′ in terms of S such that 〈x, y〉 ∈ S′.

2.2 Properties of Binary Relations on Sets

We now turn to defining structural properties of relations. We shall do so in a two-step
manner. First, we shall define what it is for a relation to have a certain structural property
on a set of objects. Then, we shall definewhat it is for a relation to have a structural property
simpliciter.

First of all, we define what it is for a relation to be reflexive on a set. Intuitively, this occurs
when every member of that set bears the relation to itself. For example, the relation is the
same human as is reflexive on the set of all humans since every human is the same human
as themselves. Likewise, the relation x is the same height as y is reflexive on the set of living
people, for clearly every living person is the same height as themselves.

Definition. (Reflexivity on S) A binary relationR is reflexive on a set S iff for every x ∈ S,
〈x, x〉 ∈ R

Notice immediately that this definitionmakes use of our convention of writing 〈x, x〉 ∈ R
for the claim that x bears R to x.

In our formal language of set theory, I canwrite the statement that a relationR is reflexive
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on a given set S as follows: ∀x(x ∈ S → Rxx).

Next, we define what it is for a relation to be irreflexive on a set. Intuitively, this occurs
when every member of that set does not bear the relation to itself. For example, the rela-
tion is a different human to is irreflexive on the set of all humans since every human is not
distinct from themselves. Likewise, the relation x is taller than y is irreflexive on the set
of living people, for clearly no living person is taller than themselves. Finally, in one of
our motivating examples, we saw that some philosophers think that causal dependence is
irreflexive on the set of events, since no event causally depends on itself.

Definition. (Irreflexivity on S) A binary relation R is irreflexive on a set S iff for every
x ∈ S, 〈x, x〉 6∈ R

In our formal language of set theory, I can write the statement that a relationR is irreflex-
ive on a given set S as follows: ∀x(x ∈ S → ¬Rxx). This should allow you to appreciate
that a relation’s being irreflexive on a given set is not always the same as its not being
reflexive on that set. A relation can be not reflexive when just one element of the set does
not bear that relation to itself, yet that need not require all elements of the set not to bear
the relation to themselves.

Can a relation be both reflexive and irreflexive on a given set? Only if the set is empty:
then it will be vacuously true that the relation is both reflexive and irreflexive on that set.

The next property of relations we will consider is symmetry. The relation is married to is
symmetric on the set of all people since, if someone x is married to someone y, then y is
also married to x. Likewise, the relation is the same human as is symmetric on the set of all
humans since if a human x is the same human as y then of course y is the same human
as x.

Definition. (Symmetry on S) A binary relation R is symmetric on a set S iff for every
x, y ∈ S, if 〈x, y〉 ∈ R then 〈y, x〉 ∈ R.

In our formal language of set theory, I can write the statement that a relation R is sym-
metric on a given set S as follows: ∀x∀y((x ∈ S ∧ y ∈ S)→ (Rxy → Ryx)).

In one of our motivating examples, we saw that some philosophers think that if effect
e causally depends on cause c, then c does not causally depend on e. Similarly, if one
situation is better, morally speaking, than another situation, then the latter cannot be
better than the former. Such cases are examples of an asymmetric relation on a given set.

Definition. (Asymmetry on S) A binary relation R is asymmetric on a set S iff for every
x, y ∈ S, if 〈x, y〉 ∈ R then 〈y, x〉 6∈ R.

In our formal language of set theory, I can write the statement that a relation R is asym-
metric on a given set S as follows: ∀x∀y((x ∈ S ∧ y ∈ S) → (Rxy → ¬Ryx)). Like
reflexivity and irreflexivity, it is important to appreciate that a relation can be not sym-
metric on a given set without being asymmetric on that set. For instance, if there is just
one case of unrequited love amongst humans then loving is not symmetric on the set of
humans. Yet if all other cases of love are reciprocal then loving is not asymmetric on the
set of humans either.
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There is also a related property of a relation being anti-symmetric on a given set. Intu-
itively, a relation is anti-symmetric on a given set when different elements of the set do
not bear the relation to one another (even though each element might bear the relation to
itself). For example, greater than or equal to is anti-symmetric on the set of natural num-
bers, since no two different natural numbers are greater than or equal to one another. But
of course each natural number is greater than or equal to itself.

Definition. (Anti-symmetry on S) A binary relation R is anti-symmetric on a set S iff for
every x, y ∈ S, if x 6= y, then if 〈x, y〉 ∈ R then 〈y, x〉 6∈ R.

In our formal language of set theory, I can write the statement that a relation R is anti-
symmetric on a given set S as follows: ∀x∀y((x ∈ S ∧ y ∈ S) → (x 6= y → (Rxy →
¬Ryx))). It might also help to think about this condition in contrapositive terms. If R is
anti-symmetric on S then when elements of S bear R to one another they are identical.
In our formal language: ∀x∀y((x ∈ S ∧ y ∈ S)→ (Rxy → Ryx)→ x = y)).

The above considerations bring out an important point. Since symmetry, asymmetry
and anti-symmetry are all conditional, the empty relation will have all three properties
vacuously on any set. Note, however, that the empty relation isn’t vacuously reflexive on
just any set. (Although it is vacuously reflexive on the empty set, like all relations are.)
Reflexivity on a set demands that every object-object pair 〈x, x〉 is in the extension of the
given relation when x is an element of the set.

Worked Example. Show that any binary relation which is asymmetric on a given set is
irreflexive on that set.

Answer. Let R be a binary relation which is asymmetric on a given set S. For every
x, y ∈ S, if 〈x, y〉 ∈ R then 〈y, x〉 6∈ R. Thus, it cannot be the case that there is some z ∈ S
such that 〈z, z〉 ∈ R, for were that the case then 〈z, z〉 6∈ R by the asymmetry of R on S.
So R is irreflexive on S too. �

Next, we define the property of transitivity for a given relation on a set. Intuitively, a
relation is transitive on a set when it ‘holds across chains’. For example, the relation
greater than is transitive on the set of natural numbers because when n is greater than m
andm is greater than k, n is also greater than k. Likewise, one of ourmotivating examples
involved transitivity: if situation s1 is better than situation s2, and situation s2 is better
than situation s3, then s1 is better than s3.

Definition. (Transitivity on S) A binary relation R is transitive on a set S iff for every
x, y, z ∈ S, if 〈x, y〉 ∈ R and 〈y, z〉 ∈ R, then 〈x, z〉 ∈ R.

In our formal language of set theory, I canwrite the statement that a relationR is transitive
on a given set S as follows: ∀x∀y∀z((x ∈ S ∧ y ∈ S ∧ z ∈ S)→ ((Rxy ∧Ryz)→ Rxz)).

Be careful not to be deceived by the metaphor of transitivity ‘holding across chains’. By
our definition, being the same human as is transitive on the set of all humans since if human
x is human y and human y is human z then x = z. However, in this ‘chain’ there is no
‘intermediary link’ between x and z: x just is z.

For a philosophical example of transitivity on a set, remember Derek Parfit’s distinction
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between psychological continuity and connectedness in ‘Personal Identity’ (1971). Let the
set again be all people. Psychological connectedness is the holding of a range of psycho-
logical states such asmemories in common. It is not transitive on the set of humans, since
this close psychological connection fails to hold down chains: I will have quite different
psychological states to myself as a child. Psychological continuity, however, is transitive
on the set of humans since it is the overlapping chain of psychological connectedness. I
am psychologically continuous with myself as a child: hence, in Parfit’s language, that
child is surviving as me.

Tip. In questions on relations, you might be asked to provide examples of relations that
have some of the above properties on a given set. You should get in the habit of using sets
of natural numbers and relations on those sets in your answers. For example, suppose
you are asked to provide an example of a transitive relation on a given set. Then your
answer might be:

S = {x : x is a natural number}

R = {〈x, y〉 : x is less than y}

Donot assume that the personwhowill be reading your answer to the questionwill have
any specialist knowledge about, for example, sets of football teams or sets of Love Island
contestants and relations amongst them.

We have introduced the following properties of relations on a set: reflexivity, symmetry
and transitivity. When a relation has all three of these properties on a set we call it an
equivalence relation on that set.

Definition. (Equivalence relation on S) A binary relation R is an equivalence relation on
a set S iff it is reflexive, symmetric and transitive on S.

Consider the relation x is exactly as tall as y on the set of living people. It is clearly reflexive
on that set, since everyone is exactly as tall as themselves. It is also symmetric on that set:
if x is exactly as tall as y, then y is exactly as tall as x. And it is transitive on that set: if x
is exactly as tall as y, and y as z, then x is exactly as tall as z. Hence x is exactly as tall as y
is an equivalence relation the set of living people. Other examples on the same set are:

• x was born in the same town as y

• x is exactly as old as y

• x is the same person as y

In contrast, x is married to y is not an equivalence relation on that set. This is because it fails
to be reflexive on that set, since no one is married to themselves. The relation x is a brother
of y on the same set is also not an equivalence relation, since it fails to be symmetric on
that set: xmay be a brother of y and y be a sister of x. Finally, x was born or died in the same
town as y on the set of all people ever is not an equivalence relation on that set because it
fails to be transitive on that set: x and y may have only their place of birth in common, y
and z only their place of death in common, and x and z neither place in common.

Equivalence relations on a set have the interesting property of partitioning a set. A par-
tition is a way of dividing up the members of a set into sectors such that every member
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belongs to exactly one sector. The division is exclusive (nothing belongs to more than one
sector) and exhaustive (every member belongs to at least one sector).

Aswithmany of the notions under discussion, set theory provides a helpful way of defin-
ing partitions.

Definition. (Partition on S) A partition P on S is a set of subsets of S such that every
member of S belongs to exactly one member of P .

As before, we can write this in our formal language for set theory:

P is a partition on S iff ∀x(x ∈ S → ∃y(y ∈ P ∧ x ∈ y ∧ ∀z((x ∈ z ∧ z ∈ P )→ y = z)))

The sectors into which a partition carves a set are equivalence classes of the relation that
does the partitioning.

Consider the relation x was born in the same country as y on the set of living people. This
is an equivalence relation on that set because it is reflexive, symmetric and transitive on
the set. It therefore partitions the set into equivalence classes. In this case, one class will
include all of the people born in the UK, one all the people born in France, and so on for
every country.

We have said that x is exactly as tall as y is an equivalence relation on the set of living
people. This relation partitions the set into equivalence classes of people of the same
height. There is a class of people who are exactly 5 feet tall, one of people 6 feet tall, and
so on. For another example, consider the relation of being the same person as. We have said
that this is an equivalence relation on the set of of living people so it must partition the
members of that set into equivalence classes. What are these classes? Each contains only
one member, since no person is identical with anything but themselves.

Finally, I will define an important type of binary relation, which is used throughout phi-
losophy, logic and mathematics. The intuitive idea is that binary relation is a function on
a given set when it produces a unique output for a given input. For example, the relation
of having as one’s first child is a function on the set of all people who ever existed because
if y is the first born child of x then no other individual z is the first born child of x too.
(Note that this doesn’t require every person who ever existed to have a first born child.)

Definition. (Function on S) A binary relation is a function on a set S iff for every x, y, z ∈
S, if 〈x, y〉 ∈ R and 〈x, z〉 ∈ R, then y = z.

In our formal language, I can write the statement that a relationR is a function on a given
set S as follows: ∀x∀y∀z((x ∈ S ∧ y ∈ S ∧ z ∈ S)→ ((Rxy ∧Rxz)→ y = z)).

For another example of a function on a given set, it might help to appreciate that being the
same human as on the set of all humans is a function, since each human is identical with
only one human: themselves.

2.3 Properties of Relations: Reference List

A binary relation R is:

reflexive on a set S iff for every x ∈ S, 〈x, x〉 ∈ R.
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irreflexive on a set S iff for every x ∈ S, 〈x, x〉 6∈ R.

symmetric on a set S iff for every x, y ∈ S, if 〈x, y〉 ∈ R then 〈y, x〉 ∈ R.

asymmetric on a set S iff for every x, y ∈ S, if 〈x, y〉 ∈ R then 〈y, x〉 6∈ R.

anti-symmetric on a set S iff for every x, y ∈ S, if x 6= y, then if 〈x, y〉 ∈ R then 〈y, x〉 6∈ R.

transitive on a set S iff for every x, y, z ∈ S, if 〈x, y〉 ∈ R and 〈y, z〉 ∈ R, then 〈x, z〉 ∈ R.

an equivalence relation on a set S iff it is reflexive, symmetric and transitive on S.

a function on a set S iff for every x, y, z ∈ S, if 〈x, y〉 ∈ R and 〈x, z〉 ∈ R, then y = z.

Exercises for 2.2-2.3

1. Consider any set S and any binary relation which is not reflexive on S. Specify a
condition on S which guarantees that the relation is also irreflexive on S.

2. Let S 6= ∅. Show that ∅ is not reflexive on S.

3. Let S = {1, 2, 3} and let R = {〈1, 2〉, 〈2, 3〉, 〈3, 2〉}.

a. Is R reflexive on S?

b. Is R symmetric on S?

c. Is R anti-symmetric on S?

d. Define a relation R′ such that R ⊆ R′ and R′ is transitive on S. Must R′ be an
equivalence relation on S?

e. Is R− {〈3, 2〉} anti-symmetric on S?

4. Show that every relation which is asymmetric on a set is also anti-symmetric on that
set.

5. A relation is anti-transitive on a set S iff for every x, y, z ∈ S, if 〈x, y〉 ∈ R and 〈y, z〉 ∈ R,
then 〈x, z〉 6∈ R.

a. Write out the definition of anti-transitivity on a set in our formal language of set
theory.

b. Can a relation be both reflexive and anti-transitive on a single non-empty set? Sub-
stantiate your answer.

c. Provide two examples of a pair of a relation and a set such that the relation is both
transitive and anti-transitive on a that set.

6. Let S be the set of natural numbers. Let 〈x, y〉 ∈ R iff x + 1 = y. Show that R is a
function on S.
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2.4 Properties of Binary Relations

It is straightforward to see that a relation might be symmetric on a certain set but not
symmetric on another set. For example, consider the following relation and sets.

S = {0, 1}

S′ = {0, 1, 2}

R = {〈0, 1〉, 〈1, 0〉, 〈1, 2〉}

The relation R is symmetric on S, since for all x, y ∈ S if 〈x, y〉 ∈ R then 〈y, x〉 ∈ R.
However, 2 ∈ S′ and 〈2, 1〉 6∈ R, so R is not symmetric on S′.

This raises a question: is there a notion of being symmetric simpliciter which binary re-
lations might possess? It turns out that there is a very simple way to define symmetry
simpliciter: being symmetric on all sets. In fact, we can define other absolute properties
of binary relations by similar means.

A binary relation R is:

symmetric iff it is symmetric on every set.

asymmetric iff it is asymmetric on every set.

anti-symmetric iff it is anti-symmetric on every set.

transitive iff it is transitive on every set.

an equivalence relation iff it is an equivalence relation on every set.

a function iff it is a function on every set.

There is one glaring omission from this list, namely the property of being reflexive. How-
ever, there is an important reason for this omission. If a binary relation is reflexive on
every set, then its extension must consist of all ordered pairs of the form 〈x, x〉 for ev-
ery individual x there is. Yet this is tantamount to claiming that there is a universal set,
which we have banned.2 So we will not define a property of binary relations, being re-
flexive simpliciter. Likewise, in our system there is not a relation of identity simpliciter.
This is slightly unintuitive, but Naïve Comprehension was intuitive and it generated a
logical disaster.

Tip. You should observe that I have not defined a notion of ‘being a binary relation on a
set’. I have just defined the notion of a binary relation (a set of only ordered pairs), and
various properties which a binary relation can have on a set.

2.5 Properties of Functions

It will help to introduce some properties of functions themselves. Before we do so, how-
ever, we first require some terminology for talking about functions.

2If you come to study somemore set theory, youwill see that it is very simple to prove that there is a universal
set if there is a set of all ordered pairs of the form 〈x, x〉 for every individual x.
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Intuitively, a function is a relation ‘from’ given inputs, which all belong to certain set, ‘to’
various respective outputs, which all belong to a set too. We can articulate these intuitive
notions more carefully.

Definition. (Domain) If F is a function, then the domain of F is the set of all x such that
there is some y for which 〈x, y〉 ∈ F . We denote this set dom(F ).

Definition. (Range) If F is a function, then the range of F is the set of all y such that there
is some x for which 〈x, y〉 ∈ F . We denote this set ran(F ).

Notation. If F is a function and x is in its domain, then F (x) denotes the unique thing y
such that 〈x, y〉 ∈ F . When F (x) = y, we say that F maps x to y.

For example, the number of coins in the jacket pocket of is a function on the set of all humans.
Its domain is the set of all people whose jacket has a pocket, and its range is some subset
of the natural numbers. For instance, lets suppose that Jeff Bezos is the person with the
most coins in his jacket pocket, namely 1,000. Then the range of the function is the set of
natural numbers from 0 to 1,000.

Definition. (From/Into) F is a function from S into S′ iff F is a function whose domain
is S and whose range is a subset of S′.

Notation. We may abbreviate the claim that F is a function from S into S′ with the
following: F : S → S′.

It is important to notice that when F : S → S′ the range of F need only be a subset of S′.
The reason for this choice is that it will allow us to define certain properties of functions
in an elegant way, as you’re about to see.

Functions themselves can possess interesting properties. For example, a function F from
S into S′ might have the special property of missing out no member of S′. The following
diagram will help to visualise this property.

a

b

c

d

1

2

3

A

B

Definition. (Surjection) A function F is a surjection from S into S′ iff for all y ∈ S′ there
is some x ∈ s such that F (x) = y.

Notation. If F is a surjection from S into S′ we say that F is a function from S onto S′.

Another special propertywhich a function can have ismapping no twodifferentmembers
of its domain to one and the same element of its range. Again, a diagram will help to
visualise this.
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b

c

1
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3
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C

D

Definition. (Injection) A function F is an injection from S into S′ iff if F (x) = F (y) then
x = y.

Now, observe that in the first diagram the function is not an injection intoB. Moreover, in
the second diagram the function is not a surjection into D. However, there are functions
which are both injections and surjections into a given set. In fact, when a function from
S into S′ has this property, it puts the sets S and S′ into a one-one correspondence. A final
diagram will help to visualise when this occurs

a

b

c

d

1

2

3

4

S S′

Definition. (One-One Correspondence) A functionF is a one-one correspondence between
S and S′ iff it is a surjection and an injection into S′.

To check that you are following the definitions here, it might be helpful to think through
why the term ‘one-one correspondence’ is used. The thought is that when F is a surjec-
tion and an injection from S into S′, it is a unique pairing between members of S and S′.
First of all, F is a surjection into S′ so for every y ∈ S′ there must be some x ∈ S for which
F (x) = y. But F is also an injection into S′, so xmust be the only member of S which F
maps to y. Thus, F pairs every y ∈ S′ with a unique x ∈ S.

Notation. Sometimes, you might see a one-one correspondence between certain sets re-
ferred to as ‘bijection’ between those sets. However, I will avoid this term in order to
reduce the amount of terminology.

It is important to know that one-one correspondences between sets are connected inti-
mately with the notion of cardinality. When sets stand in a one-one correspondence to
one another, they have exactly asmanymembers as one another, since thosemembers are
uniquely paired up by the correspondence. Thus, one way of establishing that a pair of
sets have the same cardinality is to specify a one-one correspondence between them. For
example, the set {0, 1, 2} can be put into one-one correspondence with the set {3, 4, 5} as
follows:
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0 1 2

3 4 5

In this diagram, the arrow represents the function {〈0, 3〉, 〈1, 4〉, 〈2, 5〉}. This function is
a unique pairing between the members of the sets {0, 1, 2} and {3, 4, 5}, so they have the
same cardinality.

There are other more interesting examples of one-one correspondences between pairs of
sets. For instance, I can argue that the set of even natural numbers has the same cardinal-
ity as the set of odd natural numbers by specifying a one-one correspondence between
them as follows:

0 2 4 6

1 3 5 7

In this diagram, the arrow represents the functionF from the set of even natural numbers
into the set of odd natural numbers such thatF (x) = x+1. F is a one-one correspondence
between these sets because for every odd natural number n there is some even number
which F uniquely maps to n, namely n− 1.

Once you understand this connection between cardinality and one-one correspondences,
you are in a position to appreciate an odd fact about infinite sets: infinite sets stand in
one-one correspondences with some of their proper subsets. For example, one can es-
tablish that the set of natural numbers stands in a one-one correspondence with the set
of even natural numbers, which is a proper subset of the set of natural numbers. To see
this, observe the following one-one correspondence between the natural numbers and
the even natural numbers.

0 1 2 3

0 2 4 6

In this diagram, the arrow represents the one-one correspondence F from the set of nat-
ural numbers into the set of even natural numbers such that F (x) = 2x. (You are asked
to verify that this is a one-one correspondence between these sets in exercise 4.) Thus,
the set of natural numbers stands in a one-one correspondence to one of its proper sub-
sets. As a result, the set of natural numbers has the same cardinality as one of its proper
subsets! This might take some getting used to, but it is one of the many odd facts about
infinite sets. Indeed, the German mathematician Richard Dedekind proposed that a set
is infinite exactly when it stands in a one-one correspondence to one of its proper subsets.

Exercises for 2.5

1. In our formal language, write ‘FuncS(R)’ to abbreviate the formula thatR is a function
on S, i.e. ∀x∀y∀z((x ∈ S ∧ y ∈ S ∧ z ∈ S) → ((Rxy ∧ Rxz) → y = z)). Using this
abbreviation write out the following claims in the language:
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a. R is function on S which is a surjection into S′.

b. R is function on S which is an injection into S′.

2. Let F : S → S′ be such that S′ just is the range of F .

a. Must F be an injection into S′?

b. Must F be a surjection into S′?

Substantiate each answer with either a counterexample or a proof.

3*. Let F1 : S → S′ and F2 : S → S′ with the range of F1 disjoint from the range of F2.

a. If F1 and F2 are both injections into S′, must F1 ∪ F2 also be an injection into S′?

b. Can either F1 or F2 be a surjection into S′?

4. Verify that the function F (x) = 2x from the set of natural numbers into the set of even
natural numbers is indeed a one-one correspondence between these sets.

2.6 Converses & Ancestrals

Some relations bear interesting relations to other relations. The first example is when one
relation is the converse of another. This idea is very intuitive: if R is a relation then the
converse of R is the relation that holds between x and y just if R holds between y and x.
For instance, the converse of being taller than is being smaller than since whenever x is taller
than y, y is smaller than x.

Definition. (Converse) WhenR is a binary relation, a relationR′ is its converse iff: 〈x, y〉 ∈
R iff 〈y, x〉 ∈ R′.

You might be tempted to think that the converse of a relation is in some sense its opposite.
However, be careful: every symmetric relation is its own converse, yet nothing is the
opposite of itself! For example, since the relation being a sibling of is symmetric x is a
sibling of y iff y is a sibling of x.

Another interesting relation between relations is exhibited by the pair of relations is a
parent of and is an ancestor of. Clearly, the relation is a parent of is not transitive since
Prince Charles is a parent of Prince Harry and Queen Elizabeth II is a parent of Prince
Charles, but Elizabeth is not a parent of Harry. Yet she is his ancestor. There is a certain
sense, then, in which the relation is an ancestor of is the result of making is a parent of
transitive by filling in the missing links: it chains together instances of is a parent of. Due
to this, we shall say that is an ancestor of is the ancestral of is a parent of.

Definition. (Ancestral) When R is a binary relation, a relation R′ is its ancestral iff:
〈x, y〉 ∈ R′ iff there are some z1, ..., zn such that 〈x, z1〉 ∈ R and , ... , and 〈zn, y〉 ∈ R.

To link this once again to personal identity, we know that thememory relation x remembers
being y on the set of living people is not transitive, since I may not remember being a time
slice of myself as a child. But personal identity is transitive on that set, so x and y are the
same person cannot be the memory relation. But take the ancestral of the memory relation
and the claim is more plausible.
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To verify that you are following the definitions, it might help to convince yourself that
every transitive relation is its own ancestral.

Worked Example. Show that if R is transitive its converse must be transitive too.

Answer. Let R′ be the converse of R, and suppose that R is transitive. Suppose that
〈x, y〉, 〈y, z〉 ∈ R′. We wish to show that 〈x, z〉 ∈ R′ too. However, sinceR′ is the converse
of R, 〈y, x〉, 〈z, y〉 ∈ R. Yet we are supposing that R is transitive, so 〈z, x〉 ∈ R too. Again,
since R′ is the converse of R, 〈x, z〉 ∈ R′. �

Exercises for 2.6

1. Choose an example of a function F from a set S into a set S′ such that its converse is
not a function from S′ into S.

2. Let F be an injection from S into S′. Show that its converse is a function from S′ into
S.

2.7 Complexity

So far, the relations we have considered have all been intuitive and natural-looking. This
needn’t be the case, however. Recall that a predicate is defined very broadly: any deletion
of names from a sentence and replacement with gaps is a predicate. Hence predicates
can look very unnatural, e.g. ‘x is the lecturer for Formal Logic in 2019/20 and y is the
lecturer for Sets, Relations and Probability in 2019/20’. That expresses a relation that
holds only between the pair of Owen and Alex. It’s hard to imagine such a relation being
of any real interest, but it’s a relation nevertheless.

The generous definition also entails that predicates can have logical complexity, e.g. ‘x is
DonaldGlover↔ y is ArianaGrande’. That’s a perfectly reasonable predicate, expressing
a perfectly reasonable relation, even though it contains logical complexity.

When logical complexity is involved, it can be difficult (and certainly unintuitive) to judge
its properties on a given set. Let’swork through this example on the set of currently living
people. My first tip is not to attempt to have intuitions about the case (at least not until
you’re very comfortable with these) but instead to write down the long sentence that
must be true if the relation is to have the property in question.

Let’s start with reflexivity. The following sentence has to be true on the domain of cur-
rently living people if the relation is reflexive:

∀x(x is Donald Glover↔ x is Ariana Grande)

Is that sentence true? Well, it certainly holds of all of us, since none of us are Donald
Glover and none of us are Ariana Grande. How about Donald Glover himself? It is false
of him, since he is Donald Glover but he is not Ariana Grande. By analogous reasoning,
it is false of Ariana Grande. So the universal has false instances. So the sentence is false.
The relation is not reflexive.

What about symmetry? To be symmetric on the same set, this sentence must be true:

1. ∀x∀y((x is Donald Glover ↔ y is Ariana Grande) → (y is Donald Glover ↔ x is
Ariana Grande))
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Is this true? It’s a conditional so it’s only false when the antecedent is true and the con-
sequent false. Hence it is only false when, for some value of x and y:

2. x is Donald Glover↔ y is Ariana Grande

3. ¬(y is Donald Glover↔ x is Ariana Grande)

There are only two ways that 2. can be true:

4. x =Donald Glover and y =Ariana Grande

5. x 6= Donald Glover and y 6= Ariana Grande

Let’s start with 4. If that’s the case, then 3 is false. Why? Because both sides of the
biconditional are false, so the biconditional itself is true, so the whole sentence is false.
So 4 is not a counterexample to 1.

We are left with 5. We need x to be anyone but Donald Glover and y anyone but Ariana
Grande. Let’s say they are Owen (not Donald Glover) and Alex (not Ariana Grande). But
then both sides of the biconditional in 3 are false again, so the biconditional is true again,
and its negation false. No counterexample.

But we haven’t exhausted the possibilities in 5, since there are many ways of failing to be
Donald Glover and Ariana Grande. In particular, let x = Ariana Grande and y = Owen.
Now the biconditional in 3 is false, since its left-hand side is false (Owen 6=DonaldGlover)
but its right-hand side is true (Ariana Grande = Ariana Grande). So its negation is true.
This is a valuation that makes 2 (the antecedent of the conditional in 1) true but 3 (the
consequent of the conditional in 1) false. So 1 has a false instance, so 1 is false. The relation
is not symmetric.

That’s a slow working-through of how we would decide whether a complex relation like
this has some property or other. It’s difficult to have intuitions about, so you should work
through something like this process. I leave it as an exercise to judge whether the same
relation possesses the other properties discussed, on the same set.

Exercises for 2.7

1. On the set of all people ever, determine whether the relation x is Frege or y is Russell is
reflexive, whether it is symmetric and whether it is transitive.

2. Say that a binary relationR is Euclidean on a set just if for every x, y, z ∈ S, if 〈x, y〉 ∈ S
and 〈x, z〉 ∈ S, then 〈y, z〉 ∈ S. On the set of living people, is the relation x loves y only if
y loves x:

a. reflexive?

b. symmetric?

c. transitive?

d. Euclidean?
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2.8 References & Further Reading

For further reading and other exercises, see the third chapter of Enderton, H. (1977) Ele-
ments of Set Theory. London: Elsevier. See also the second chapter of Steinhart, E. (2009)
More Precisely. Ontario: Broadview.
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3 Probability

Probabilistic reasoning is common in ordinary life. Before leaving the house, one might
estimate the likelihood of it raining given that there are grey clouds in the sky. Onemight
then try to calculate the likelihood of the tube being overcrowded given that one of the
lines is closed down.

Probabilistic reasoning is also rife in philosophy. In the philosophy of science, we discuss
the extent to which theories are confirmed probabilistically. In metaphysics, probabilistic
accounts of causation are popular. In the philosophy of language, there are probabilis-
tic accounts of conditionals. Probability is central to quantum mechanics, philosophy of
biology, philosophy of statistics and philosophy of social science. Probability is also a
central component of decision theory, game theory and their applications to e.g. moral
and political philosophy. In the philosophy of mind, various mental states are often rep-
resented as probabilities (degrees of belief). And, of course, there is the philosophy of
probability itself, which we’ll touch on later. In this part of the course, we will focus on
the probability calculus but also have something to say of its philosophical interpretation.

3.1 Fallacies

To highlight the importance of knowing how to reason with probability, we will first con-
sider four common fallacies which people make when reasoning probabilistically. The
account of probability developed in the following sections will offer further insight into
why these patterns of reasoning are fallacious.

(i) Gambler’s Fallacy

In the Budget Casino Nevada, gamblers bet on the simple game of coin toss in which a fair
coin is flipped and bets are placed on it landing either heads or tails. On one evening, the
coin is flipped twenty times in a row and each time it comes up heads. Gamblers rush to
place high bets on the twenty-first flip landing tails, for they think it is extremely unlikely
that the coin will land heads for a twenty-first time in a row.

Which fallacy do you think the gamblers are making?

Intuitively, the issue is that the outcome of the twenty-first coin flip is completely inde-
pendent of the outcomes of previous coin flips. The outcomes of those previous coin flips
don’t constrain the likelihood of the coin landing heads in the twenty-first flip.

(ii) Conjunction Fallacy

The famous psychologists Tversky and Kahneman gathered data on responses to the fol-
lowing puzzle.

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As
a student, she was deeply concerned with issues of discrimination and social justice, and
also participated in anti-nuclear demonstrations. Which is more probable?

1. Linda is a bank teller.

2. Linda is a bank teller and is active in the feminist movement.
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A majority of people responded with option 2. Perhaps their line of reasoning was that
Linda is very likely to be active in the feminist movement, so it’s more likely that she is
both a bank teller and active in the movement.

However, this would be a fallacious line of reasoning. What do you think is fallacious
about it?

The issue is that the probability of a conjunction of events occurring is always no greater
than the probability of one of them occurring.

(iii) Inverse Fallacy

A true story: I once knew a probability theorist who went to the doctor to have a test for
Tuberculosis. Before the having the test, the doctor explained that the test was highly
accurate. In response, the probability theorist asked ‘do you mean that

1. the probability that the test shows positive given that I have Tuberculosis is high?, or

2. the probability that I have Tuberculosis given that the test shows shows positive is
high?’

In response, and much to the probability theorist’s dismay, the doctor asked ‘aren’t they
the same thing?’

What is fallacious about the doctor’s identification of 1 and 2 in this scenario?

The issue can be explained in terms of false positives and false negatives. Perhaps the
test is highly accurate in the sense that it results in very few false negatives: given that
someone has Tuberculosis, it is highly likely that the test will show positive. However,
whilst this might be the case, perhaps the test records quite a few false positives: there
is a significant number of cases in which the test shows positive but the person does not
indeed have Tuberculosis.

(iv) Base Rate Fallacy

Suppose that 85% of the taxis in Smallville are green and 15% are blue, and there was an
accident involving a taxi. A witness reports that the taxi was blue. Let’s say the witness
correctly identifies the colour of taxis 80% of the time and incorrectly identifies them 20%
of the time. How likely is it that the taxi was blue?

Onemight think that it is very likely that the taxi was blue, for thewitness is very reliable.
However, this would be fallacious. Why do you think that is the case?

This fallacy is tricker to spot than the others we’ve considered so far, but the issue is that
we are ignoring the low base rate or initial probability that we’re dealing with a blue taxi.
The point is that, in spite of the reliability of our witness, the proportion of blue taxis in
Smallville is only 15%. Thismeans that the proportion of green taxis incorrectly identified
as blue remains greater than the proportion of blue taxis correctly identified as blue. So,
given the low base rate of blue taxis, it is still more likely that our very reliable witness
misidentified a green taxi than correctly identified a blue taxi. It’s just so unlikely that
they saw a blue car at all.
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Although it helps to have an informal understanding of the nature of these fallacies, it
would be better to have a formal framework for reasoning probabilistically which will
guarantee that one avoids making these fallacies in one’s own reasoning.

3.2 Outcomes, Events & Fields

We will be assigning probabilities to sets of outcomes. There are other candidates in the
literature, such as propositions and sentences, but sets of outcomes seem themost natural
for various reasons.

Let’s say that the probability of the Conservatives winning the next election is 40%. It
seems natural to regard a Conservative victory as a set of outcomes since it includes the
case where they win by 1 seat, by 100 seats, etc, and these are clearly different states
of affairs. How finely the states of affairs are individuated will normally be settled by
context.

Definition. (Outcome space) The set of possible outcomes inwhichwe are interestedwill
be called the outcome space, V . In other places, youwill find this referred to as the reference
set or the sample space. In this course, we shall only consider finite outcome spaces.

For example, if we throw a fair six-sided die, there are 6 possible outcomes. Wemight de-
scribe the outcome space as follows: V = {1, 2, 3, 4, 5, 6}. There are 6 possible outcomes
but there are more than 6 sets of outcomes, which we will call events.

For example, wemaywant to know the probability of rolling an even number, or of rolling
either a 1 or a 5. The first event would be represented as {2, 4, 6} and the second as {1, 5}.
How many events are there? The following definition answers this question.

Definition. (Field) For outcome space V , the events will be the members of P(V ). The
set of events P(V ) will be called the field, FV , of V .

Thus, for an outcome space with nmembers, we know that there will be 2n events.

Notation. When the outcome space V is clear from the context, we shall sometimes
write FV as F .

Fact. The field contains the certain event, {1, 2, 3, 4, 5, 6} and the impossible event, ∅. It is
also closed under the operations of intersection, union and complement in the following
senses.

1. If X ∈ FV and Y ∈ FV , then X ∩ Y ∈ FV .

2. If X ∈ FV and Y ∈ FV , then X ∪ Y ∈ FV .

3. If X ∈ FV , (V −X) ∈ FV .

Notation. When V is clear from the context, we shall write X for V − X . So, the final
condition may be written as: ifX ∈ FV ,X ∈ FV . Some texts will writeX∗ for V −X ; we
are not using that notation.
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Exercises for 3.2

1. Let V be an outcome space. Show that the field FV of V is indeed closed under the
operations of intersection, union and complement, as stated in the above fact.

2. Let V be an outcome space. A meadow of setsMV on V is defined as follows.

1. V ∈MV

2. If X ∈MV and Y ∈MV , then X ∪ Y ∈MV .

3. If X ∈ FV , X ∈MV

Show that any meadow of sets on V is closed under intersection.

3.3 Probability Functions & Kolmogorov Axioms

The next step is to define a probability function on a field of events which will allow us
to assign numbers to members of that field.

Intuitively, the probability function will assign the certain event the number 1, and every
event will be assigned some non-negative real number.3 In addition, for incompatible
events like a fair coin landing heads and the same coin landing tails (in the same flip), the
probability of one-or-the-other happening is simply the sum of their probabilities, i.e. the
sum of the probability of the coin landing heads and the probability of the coin landing
tails.

Definition. (Probability function) Let V be an outcome space. A probability function on
FV is a function Prwhich assigns non-negative real numbers to members of F and obeys
the following Kolmogorov axioms for any X,Y ∈ FV :

Axiom 1. Pr(V ) = 1

Axiom 2. Pr(X) ≥ 0

Axiom 3. If X ∩ Y = ∅, then Pr(X ∪ Y ) = Pr(X) + Pr(Y )

With just these constraints on probability functions, we are already in a position to estab-
lish a helpful fact about how they behave.

Worked Example. Show that Pr(X) + Pr(X) = 1.

Answer. Pr(X) + Pr(X) = Pr(X) + Pr(V −X) Def. X

= Pr(X ∪ (V −X)) Axiom 3

= Pr(V ) Defs. ∪ & −

= 1 Axiom 1

�

3The real numbers include numbers like 0, 1, 1
3
, 0.3333 . . . , and so on.

32



Exercises for 3.3

1. Show that Pr(∅) = 0.

2. Let V be an outcome space and let X ∈ FV .

i. Show that Pr(X) = 1− Pr(X).

ii. Conclude that 0 ≤ Pr(X) ≤ 1.

3. Show that Pr(A∩B) ≤ Pr(A). How does this fact connect to the conjunction fallacy?

3.4 Interpretation of Probability: Principle of Indifference

The Kolmogorov Axioms provide us with general structural constraints on probability
functions. However, we wish to know how to assign probabilities to events. Our method
will be first to assign probabilities to outcomes by assigning probabilities to their sin-
gleton sets. In simple cases, we already know how to do this. For example, with a fair
six-sided die, the probability of the event that it lands 6 after being rolled is, of course,
1
6 . But what justifies this? Can we articulate the underlying principle which will guide
our probability assignments in more complex cases? These are questions which pertain
to the interpretation of our working notion of probability.

We might be tempted to substantiate our assignment of probability be appealing to the
physical symmetry of the die. After all, it is a fair, evenly weighted die and so of course
it will come up 6 on 1 in 6 rolls.

Indeed, we might try to articulate the general principle of indifferencewhich underlies this
idea this as follows: whenever there is no evidence favouring one event over another, each
should be assigned the same probability as the others. In the words of John Maynard
Keynes:

The Principle of Indifference asserts that if there is no known reason for pred-
icating of our subject one rather than another of several alternatives, then rel-
atively to such knowledge the assertions of each of these alternatives have an
equal probability. Thus equal probabilities must be assigned to each of sev-
eral arguments, if there is an absence of positive ground for assigning unequal
ones.

Keynes, J. M. (1921) A Treatise on Probability, p. 42

This principle is at the heart of the classical interpretation of probability.

Nevertheless, we will not be justifying assignments of probability with the principle of
indifference, for the principle is inconsistent. This inconsistency arises because the prin-
ciple is overly sensitive to how events are described.

To appreciate this point, suppose I tell you only that a car travelled 100 miles at an aver-
age speed of between 50 and 100mph. What is the probability that the average speed was
between 75 and 100mph? You may be tempted to say 0.5, because the ranges 50-75mph
and 75-100mph are equally possible. But now I reformulate the problem: a car took be-
tween 1 and 2 hours to travel 100 miles. This is intuitively the same situation. What is the
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probability that the journey took between 1 hour and 11
3 hours? You may be tempted to

say 1
3 since the ranges 1− 11

3 , 1
1
3 − 12

3 , 1
2
3 − 2 hours are equally likely.

This is a problem: I have asked equivalent questions and the principle of indifference has
delivered incompatible answers. This interpretation seems to make probability far too
sensitive to description.

3.5 Interpretation of Probability: Frequentism

Instead of using the principle of indifference, our assignment of probabilities to events is
due to their frequencies: the probability of rolling a 6 is 1

6 because it has in fact come up 6
about one-sixth of the time.

This is still not an ideal interpretation of probability. There are difficult questions about
how to assign probabilities to event types which have never had tokens. Moreover, there
are the usual Humean worries about induction. We know that past experience does not
make the future certain so it also doesn’t make it likely. The procedure is, then, for the
usual Humean reasons, irrational.4

Nevertheless, unlike the principle of indifference, it is a consistent way of assigning prob-
abilities to events, and it will suffice for current purposes.

To return to the die example, we will say that Pr({6}) = 1
6 . (Notice that we assign a

probability to a singleton since the function is defined on the field of outcomes.) Similarly,
for a standard deck of cards (52 different cards; 13 in each of 4 suits), the probability of
drawing the king of clubs is 1

52 . In other words, Pr({KC}) = 1
52 .

We can also work out the probability of other events. What is the probability that a card
drawn from a standard deck of cards is either the ace of hearts or an even spade? We
need to consider the relevant subset of V . Let’s call it T = {2S, 4S, 6S, 8S, 10S,AH}. We
want to know Pr(T ). From the third Kolmogorov axiom:

Pr(T ) = Pr({2S}) + Pr({4S}) + Pr({6S}) + Pr({8S}) + Pr({10S}) + Pr({AH})

= 6
52

= 3
26

It might help to note that |T ||V | =
6
52 , where V is the outcome space.

For another example, let U be the event that an ace is drawn, i.e. U = {AH,AS,AC,AD}.
What’s the probability that an ace is drawn and its either the ace of hearts or an even
spade? This event is just (U ∩ T ) = {AH}, so Pr(U ∩ T ) = 1

52 .

3.6 Conditional Probability

Next, we define the notion of conditional probability: the probability of one event occur-
ring, given that another event occurs. For example, perhaps we want to calculate the
probability of it raining in an hour given that the sky is grey. Or perhaps we want to

4See Hájek (2009) discussion of the philosophical issues surrounding even quite sophisticated forms of fre-
quentism.
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calculate the probability of a student getting a First given that they performed extremely
well in their supervisions.

We define the conditional probability of A conditional on B in terms of the probability
of both A and B occurring over the probability of B occurring. For example, suppose
we are interested in probability of having drawn the ace of spades (A) given that an ace
has been drawn (B). We know the probability that an ace is drawn is 4

52 . We also know
that the probability of drawing both an ace and the ace of spades is just the probability of
drawing the ace of spades, which is 1

52 . So, the probability of drawing the ace of spades
conditional on drawing an ace is 1

4 . Intuitively, this is correct: given that I have drawn an
ace, there are four cards I might have drawn, and the ace of spades is one of them.

Definition. (Conditional Probability)

Pr(A|B) =
Pr(A ∩B)

Pr(B)
providingPr(B) 6= 0

We pronounce ‘Pr(A|B)’ as ‘the probability ofA givenB’. The conditional probability of
A given B remains undefined when Pr(B) = 0.

Worked Example. What is the probability that a fair six-sided die comes up 2, given that
it comes up even?

Answer. Let V = {1, 2, 3, 4, 5, 6}. The outcomes where the die is even are E = {2, 4, 6}.
The outcome that the die is 2 is T = {2}. So, applying the formula:

Pr(T |E) =
Pr(T ∩ E)

Pr(E)

But note that T ∩E = T because T ⊆ E. Now Pr(T ∩E) = Pr(T ) = 1
6 . And Pr(E) = 1

2 .
So:

Pr(T |E) =
1
6
1
2

=
1

3

�

This definition also puts us in a position to diagnose the issue with the inverse fallacy
more explicitly. In certain cases, we can manipulate the definition of conditional prob-
ability to show that the probability of A given B is different from the probability of B
given A.

For example, we’ve just worked out the probability that a fair six-sided die comes up 2,
given that it comes up even. Yet we can also use the definition of conditional probability
to show that the probability that it comes up even, given that it comes up 2 is 1: it’s certain
to happen.

Pr(E|T ) = Pr(E ∩ T )
Pr(T )

=
Pr(T )

Pr(T )
= 1

Thus, Pr(T |E) 6= Pr(E|T ).

Finally, notice that we now have a helpful way to calculate the probabilities of intersec-
tions of events, by a simple rearrangement of the definition of conditional probability.
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Pr(A ∩B) = Pr(A|B)× Pr(B)

This gives us a means of calculating Pr(A ∩ B) (intuitively, A and B) when we have
Pr(A|B) and Pr(B).

Exercises for 3.6

1. Jessica is dealt a single card from a standard deck.

a. What’s the probability that it’s a 7 given that it’s a spade?

b. What’s the probability that it’s a spade given that it’s a 7?

c. What’s the probability that it’s a spade given that it’s not a 7?

d. What’s the probability that it’s neither a spade nor a club given that it’s not a 7?

2. The Cambridge Scrabble Team has 10 members. The Team is divided in two: there
are six A-team members and four B-team members. Four A-team members are also in
the Cambridge Cluedo Club, as is one B-team member. A member of the Cambridge
Scrabble Team is selected at random.

a. What’s the probability that they are in the Cluedo Club?

b. What’s the probability that they are in the Cluedo Club given that they are an A-
team member?

c. What’s the probability that they are an A-team member given that they are in the
Cluedo Club?

d. What’s the probability that they are in the CluedoClub given they are in theA-team
and the B-team?

3.7 Probabilistic Independence & Dependence

Intuitively, some events are probabilistically independent of other events. For example, sup-
pose I roll a pair of fair dice at once. The outcomes of those rolls are probabilistically
independent: the probability of either occurring does not depend on the probability of
the other occurring. To appreciate this, notice that the probability of one die showing 4
is 1

4 , and also the probability of that die showing 4 given that the other shows 6 is still 1
4 :

it makes no difference, probabilistically speaking.

This suggests a way of defining of probabilistic independence in terms of conditional
probability.

Definition. (Probabilistic Independence)

A is probabilistically independent of B with respect to Pr iffPr(A|B) = P (A)

This relation is symmetric, which you are asked to show in an exercise below.

Events are defined to be probabilistically dependent (with respect to a probability function)
when they are not probabilistically independent (with respect to that function). For ex-
ample, suppose I roll a single fair die. The event of its showing 4 is probabilistically
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dependent on whether it shows an even number: the probability that it shows 4 given
that it shows an even number is higher than the probability that it shows 4.

Philosophically, it is interesting to note that an event might depend probabilistically on
another event even though it is not caused by it. For example, the event of the fair die
showing 4 depends probabilistically on whether it shows an even number, as we’ve just
seen. Yet there is no sense in which the die showing an even number caused the die to
show 4. These events occur simultaneously, so how could one cause the other?

Our definition of probabilistic independence has a helpful consequence. Namely, from
it we can derive that when A and B are probabilistically independent, the probability
of them both occurring is just the probability of one occurring by the probability of the
other occurring.

Fact. If A is probabilistically independent of B with respect to Pr, then Pr(A ∩ B) =
Pr(A)× Pr(B).

A simple argument establishes this fact. SupposeA is probabilistically independent ofB
with respect to Pr, then we may reason as follows.

Pr(A ∩B) = Pr(A|B)× Pr(B) Def. Pr(A|B)

= Pr(A)× Pr(B) Supposition

No such argument is available when A and B are probabilistically dependent.

Worked Example. Exactly 50% of the population are female and 30% of females have blue
eyes. What is the probability that a randomly selected person is female and blue-eyed?

Answer. Let F be the event of selecting a female and B the event of selecting someone
with blue eyes. We are given that Pr(F ) = 0.5 and Pr(B|F ) = 0.3. Rearranging the
conditional probability formula and substituting:

Pr(B ∩ F ) = Pr(B|F )× Pr(F ) = 0.3× 0.5 = 0.15
�

We’re also now in a position to appreciate the error embodied in the gambler’s fallacy. In
the initial case with the twenty-one coins flips, the successive coin flips are probabilisti-
cally independent of one another. Thus, the probability that the coin will lands heads on
the twenty-first flip given that it has landed heads on the previous twenty flips is just the
probability that the coin will lands heads on the twenty-first flip.

Exercises for 3.7

1. Show that probabilistic independence is symmetric.

2. Thinking back to the gambler’s fallacy, show that the probability of flipping twenty-one
heads in a row equals the probability of twenty heads in a row and then tails.

3.8 Bayes’ Theorem

In this section, we’ll use the probability calculus to derive two versions of a powerful
theorem: Bayes’ Theorem.
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3.8.1 First & Second Versions

We begin with an example. Polly is a political scientist interested in the reasons for which
people voted to leave the European Union. As we all know ad nauseam, 52% of the elec-
torate voted to leave and 48% voted to remain. However, Polly conducts a highly accurate
survey and comes to two conclusions. First, 59% of the electorate cited reasons pertain-
ing to constitutional sovereignty as their main motivation for voting the way they did.
Second, 21 out of 26 people who voted to leave cited reasons pertaining to constitutional
sovereignty as their mainmotivation the way they did. Polly asks the following question.

Polly’s Question: Suppose I randomly select a member of the electorate. What’s the
probability that, given the person cites reasons pertaining to constitutional sovereignty
as their main motivation for the way they did, they voted to leave?

A powerful theorem of the probability calculus known as Bayes’ Theorem allows one to
find the answer to Polly’s question. It allows one to calculate the probability of a hypoth-
esis given some evidence on the basis of the probabilities of the evidence, the hypothesis,
and the evidence given the hypothesis.

Theorem. (Bayes’ Theorem, First Version)

Pr(H|E) =
Pr(E|H)× Pr(H)

Pr(E)

Proof. Pr(H|E) =
Pr(H ∩ E)

Pr(E)
Def. Pr(H|E)

=
Pr(E ∩H)

Pr(E)
Def. ∩

=
Pr(E|H)× Pr(H)

Pr(E)
Rearranging Def. Pr(E|H)

�

Using this version of Bayes’ Theorem, Polly can answer her question. First, let’s state the
facts which Polly has already established.

H := the randomly selected person voted to leave (the ‘hypothesis’)

E := the randomly selected person cites reasons pertaining to constitutional sovereignty
as their main motivation for the way they did (the ‘evidence’)

Pr(H) = 52
100

Pr(E) = 59
100

Pr(E|H) = 21
26

We can then plug these data into Bayes’ Theorem to calculate Pr(H|E).

Pr(H|E) =
21
26 ×

52
100

59
100

=
42

59
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Polly knew the probabilities of the hypothesis, the relevant piece of evidence, and of that
evidence given that hypothesis, so she could calculate the probability of that hypothesis
given that evidence.

There is an interesting upshot: if some hypothesis predicts an observation that was very
unlikely in advance, then actuallymaking that observation is very strong evidence for the
hypothesis. For example, suppose I hold some bizarre conspiracy theoryH according to
which the end of planet earth will occur this week. And suppose that on the basis ofH I
predictE, that there will be widespread earthquakes all over theworld tomorrow. Today,
one might think that Pr(H) and Pr(E) are very low. One might also think that Pr(E|H)
is very high, for argument’s sake 1. This is because, although one doesn’t thinkmybizarre
theory has any plausibility, we’re happy to allow that given it’s correct, then there will be
widespread earthquakes. In light of all this, given one observes widespread earthquakes
tomorrow, then the likelihood of the hypothesis rises enormously (by a factor of 1

Pr(E) ).

The first version of Bayes’ Theorem allows us to calculate Pr(H|E) on the basis of knowl-
edge of Pr(E|H), Pr(H) and Pr(E). Sometimes, however, wemay be unaware of Pr(E).
Nevertheless, there’s a neat trick for available for figuring out Pr(E) on the basis of other
available information. This trick will lead us to the second version of Bayes’ Theorem.

To see this, let’s tweak the case of Polly so that she does not know the probability that
a randomly selected member of the electorate cites reasons pertaining to constitutional
sovereignty as their main motivation for voting the way they did, i.e. Pr(E). However,
let’s suppose that Polly does know the probability that the person’s main reason pertained
to constitutional sovereignty given that they voted to remain, i.e. Pr(E|H):

Pr(E|H) = 17
48

As I mentioned at the beginning, Polly already knows Pr(H) = 48
100 . Now, Polly can use

what she knows to calculate Pr(E) using the following fact.

Fact. Pr(E) = [Pr(E|H)× Pr(H)] + [Pr(E|H)× Pr(H)]

Proof. First, notice the following two set-theoretic facts, whose proofs are left as exercises
to the reader (see exercise 3.8.1).

E = (E ∩H) ∪ (E ∩H)

(E ∩H) ∩ (E ∩H) = ∅

Hence, by Axiom 3 of the probability calculus:

Pr(E) = Pr((E ∩H) ∪ (E ∩H)) = Pr(E ∩H) + Pr(E ∩H)

Thus, by the formula for conditional probability:

Pr(E) = [Pr(E|H)× Pr(H)] + [Pr(E|H)× Pr(H)]

�
Using this fact, we obtain the second version of Bayes’ Theorem.
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Theorem. (Bayes’ Theorem, Second Version)

Pr(H|E) =
Pr(E|H)× Pr(H)

[Pr(E|H)× Pr(H)] + [Pr(E|H)× Pr(H)]

Polly can now use this version of Bayes’ Theorem to find Pr(H|E). Plugging in the pieces
of information which Polly knows, we obtain:

Pr(H|E) =
21
26 ×

52
100

(2126 ×
52
100) + (1748 ×

48
100)

=
42

59

Let’s consider another example using this version of Bayes’ Theorem.

Worked Example. There are two boxes, A and B. A contains 2 red balls and 8 yellow
balls. B contains 7 red balls and 3 yellow balls. You randomly select a box (you don’t
know which) with equal probability and randomly select a ball from the box – it’s red.
What is the probability that you have box A?

Answer. Let’s first label the following sets:

A := Box Awas chosen

R := A red ball was picked

We want Pr(A|R), which is:

Pr(R|A)× Pr(A)
[Pr(R|A)× Pr(A)] + [Pr(R|A)× Pr(A)]

We know the following values:

Pr(R|A) = 2
10

Pr(R|A) = 7
10

Pr(A) = 1
2

Pr(A) = 1
2

From all this, we can conclude the following:

Pr(A|R) =
2
10 ×

1
2

( 2
10 ×

1
2) + ( 7

10 ×
1
2)

=
2

9

�

3.8.2 Miracles

The most famous application of Bayes’ Theorem is Hume’s treatment of miracles. Sup-
pose that a witness reports that a man walked on water. Let’s call this T , for ‘testimony’.
And let’s call the walking-on-waterM , for ‘miracle’.

To calculate the probability that a miracle occurred given that the witness reported it,
Pr(M |T ), we need Pr(M), Pr(T |M) and Pr(T |M).
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Let’s use ‘1M’ as shorthand for ‘1,000,000’, and say that Pr(M) = 1
1M , so a miracle is

highly unlikely. Let’s also say that Pr(T |M) = 9
10 and Pr(T |M) = 1

100 , so the testimony
is highly reliable. Now we can apply Bayes’ Theorem:

Pr(M |T ) =
0.9
1M

0.9
1M + 0.01×999,999

1M

≈ 1

10, 000

In spite of the reliability of the witness, it is still extremely unlikely that the miracle oc-
curred.

Let’s give the last word to Hume:

The plain consequence is (and it is a general maxim worthy of attention),
“That no testimony is sufficient to establish a miracle, unless the testimony
be of such a kind, that its falsehood would be more miraculous, than the fact,
which it endeavours to establish; and even in that case there is a mutual de-
struction of arguments, and the superior only gives us an assurance suitable
to that degree of force, which remains, after deducting the inferior.”

Hume, ‘Of Miracles’ pp. 115-116

3.8.3 Base Rate Fallacy

We can also apply Bayes’ Theorem to diagnose the error present in the base rate fallacy.
Consider our initial example of the taxis in Smallville. Recall that 85%of the taxis in Smal-
lville are green, 15% are blue, and therewas an accident involving a taxi. A highly reliable
witness, who correctly identifies the colour of taxis 80% of the time and incorrectly iden-
tifies them 20% of the time reports that the taxi was blue. We asked the question: how
likely is it that the taxi was blue?

Let’s start to address the question more carefully than before by labelling some sets:

B := The taxi was blue

W := The witness said the taxi was blue

And we have the following values: Pr(W |B) = 80%; Pr(B) = 15%; Pr(W |B) = 20%;
Pr(B) = 85%. Now:

Pr(B|W ) =
Pr(W |B)× Pr(B)

[Pr(W |B)× Pr(B)] + [Pr(W |B)× Pr(B)]

=
0.8× 0.15

(0.8× 0.15) + (0.2× 0.85)
≈ 41%

So the witness is probably wrong. But this may surprise us: after all, the witness is 80%
reliable. What’s gone wrong? We are ignoring the low base rate or initial probability that
we’re dealing with a blue taxi. To ignore this is to commit a base rate fallacy.

3.8.4 The Monty Hall puzzle

TheMontyHall puzzle is a famous problem to dowith probability based on theAmerican
game show Let’s Make a Deal, hosted by Monty Hall.5 You’re on a game show and can

5The original puzzle is due to the statistician Steve Selvin (1975).
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choose one of three doors. Behind one of the doors is a 1975 Lincoln Continental, and
behind the other two are goats. You want the car. You choose, for argument’s sake, door
1. You then ask Monty Hall to tell you which of the remaining doors does not have the
car behind it (or choose one at random if neither does). Monty Hall tells you that the car
is not behind door 3, and opens it to reveal a goat. Monty Hall then offers you the option
to switch to door 2. Question: should you switch?

Let H be the event that you initially picked the correct door. Let E be the event that
Monty Hall opens door 3. Thus, Pr(H) = 1

3 and Pr(E|H) = 1
2 . Notice also that:

Pr(E) = [Pr(E|H)× Pr(H)] + [Pr(E|H)× Pr(H)] =
1

2

Now, plugging all this into Bayes’ Theorem:

Pr(H|E) =
Pr(E|H)× Pr(H)

Pr(E)
=

1
2 ×

1
3

1
2

=
1

3

So you should be twice as confident that the car is behind door 2. You should switch!
(Assuming that you don’t really want a goat.)

This is all highly counterintuitive. What’s going on? When you made your original
choice, your chance of being correct (the car is behind door 1) was clearly 1

3 . So your
chance of being incorrect (the car is behind door 2 or 3) was 2

3 . But, Monty having elimi-
nated door 3, the 2

3 probability is now, if you like, all behind door 2.

Exercises for 3.8

1. Establish the following two set-theoretic facts.

E = (E ∩H) ∪ (E ∩H)

(E ∩H) ∩ (E ∩H) = ∅

2. On Levin’s farm there are 1500 crops: 900 food crops and 600 oil crops. 30 food crops
and 60 oil crops have a nutrient deficiency. Levin is a diligent farmer and devises a chem-
ical test to discern whether a crop is lacking in nutrient deficiency. The test, however, is
not particularly reliable. When applied to a nutrient deficient crop, the test is positive
60% of the time. And when applied to a nutrient non-deficient crop it tests positive 10%
of the time. A crop from Levin’s farm is randomly selected. Calculate probability that:

a. the crop is nutrient deficient given that it is an oil crop.

b. the crop is an oil crop given that it is nutrient deficient.

c. the crop is not nutrient deficient given that it is a food crop.

d. the crop is nutrient deficient given that the test is positive.

e. the crop is not nutrient deficient given that the test is positive.
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3.9 Repeated Trials

So far, we have only considered single die rolls or card draws, but we may well be inter-
ested in repetition of these. The approach we take to such cases will depend on whether
the trials are probabilistically independent or not. The former is somewhat simpler, so
let’s start there.

3.9.1 Independent Trials

Suppose you toss a coin twice and you want to know the probability of tossing at least
one heads. These are clearly independent events, since each coin toss has no bearing on
the other.

To find out the probability of tossing at least one heads, we can break the process down
into two steps.

Step 1. (Determine the outcome space) The first step with questions of this sort is to
work out the outcome space. The outcome space of each toss considered individually is
V = {H,T}. So, there are four outcomes for the entire trial.

Outcome 1: both heads

Outcome 2: first heads, second tails

Outcome 3: first tails, second head

Outcome 4: both tails

In other words, the outcome space for both tosses considered jointly is the set:

{〈H,H〉, 〈H,T 〉, 〈T,H〉, 〈T, T 〉}

It is important to note that this set is just V 2, the Cartesian product of V with itself. In-
deed, this suggests a more general fact, which is helpful to keep in mind.

Fact. Let V be an outcome space for some trial (e.g. rolling a die, or flipping a coin). The
outcome space for that trial and an independent repetition of that trial is V 2 = {〈x, y〉 :
x ∈ V ∧ y ∈ V }. Order is of course crucial here, so that we can distinguish events that
are intuitively distinct.

Examples of independent repetitions of trials include flipping a fair coin two times suc-
cessively, or drawing a card from a standard deck once, replacing it, and then making
another draw from the pack.

Step 2. (Determine the relevant formula) The second step is to determine the relevant
formula. To do this, it is helpful to consider the set whose probability we are after. So,
recall that we are after the probability of tossing at least one heads. This event is the
following set:

{〈H,H〉} ∪ {〈H,T 〉} ∪ {〈T,H〉}

This set has an important feature which one might notice immediately by considering
the formula above: it is the union of incompatible (i.e. disjoint) events: they each have
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only one member and it is unique in each case. This is extremely helpful to notice, since
it allows us to apply Axiom 3 of the probability calculus to figure out the probability of
the entire event.

First, recall Axiom 3.

Axiom 3. If X ∩ Y = ∅, then Pr(X ∪ Y ) = Pr(X) + Pr(Y )

Next, we use this to calculate the probability of the event:

Pr({〈H,H〉}) + Pr({〈H,T 〉}) + Pr({〈T,H〉}) = 1
4 + 1

4 + 1
4 = 3

4

Tip. As a rule of thumb, in questions about repeated independent trials which do not
involve conditional probability, typically the answerwill be available by a straightforward
application of Axiom 3.

3.9.2 Dependent Trials

An example of a repeated trial where we have probabilistic dependence is repeated card
draws from a deck without replacement. The probability of the second draw will depend
on the first, since a card has been removed from the deck. Intuitively, the first drawmakes
a difference to the second, since the deck is reduced. Nothing like this was the case with
the coin tosses.

Let’s take a specific example of a repeated trial with dependence. Suppose we want to
know the probability that at least one of our two card draws without replacement is an
ace. We can break the process down into steps like before.

Step 1. (Determine the outcome space) The outcome space, V , for a single card draw
has 52 members. In the case of two card draws without replacement, the outcome space
cannot be V 2, since we cannot remove the same card twice. So, we first need to figure out
what the outcome space is.

Think about a simulation of the case. If you draw a card from the deck and don’t replace
it, then one thing you can never do is draw that card again. So, regardless of which card
you draw first, there will never be an outcome in which you draw it in the second draw.
Thus, the outcome space is just the result of removing all of those ‘double-draws’ from
V 2, which we know can be described as follows:

V 2 − {〈x, x〉 : x ∈ V }

This set has 52× 51members, each of whose members has equal probability.

Step 2. (Determine the relevant formula) Recall that we want to know the probability
that at least one of our two card draws without replacement is an ace. It will first help to
label some events to stop the notation getting too cumbersome:

A The first card is an ace and the second is not.

B The second card is an ace and the first is not.

C Both cards are aces.

44



Wewant Pr(A∪B∪C). Now, note that the intersection of any pair of these sets is empty:
every member of A has an ace in the first place, removing it from B, and a non-ace in
second, removing it from C. Similar reasoning shows that all the sets are disjoint. So
using Axiom 3 again:

Pr(A ∪B ∪ C) = Pr(A) + Pr(B) + Pr(C)

What are these probabilities?

A has 4× 48members, so:

Pr(A) =
4× 48

52× 51

By parity of reasoning, B has 4× 48members, so:

Pr(B) =
4× 48

52× 51

The set C has 4× 3 members, so:

Pr(C) =
4× 3

52× 51

Consequently, our answer is:

Pr(A ∪B ∪ C) = (4× 48) + (4× 48) + (4× 3)

52× 51
=

99

13× 51
=

33

13× 17
=

33

221

Tip. Often it is useful to keep the numbers in these unexpanded forms at first, since they
will just cancel.

Exercises for 3.9

1. Suppose you draw two cards from a deck with replacement, what’s the probability of:

a. drawing two clubs?

b. drawing a club first and a non-club second?

c. drawing at least one club?

2. Alexei Ivanovich likes to play roulette, in which there is a wheel with thirty-seven
numbers 0-36.
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The wheel is spun, a ball is rolled onto it, and when the wheel stops the ball lands on a
number. Alexei plays for three spins.

a. What’s the probability of Alexei getting:

i. 32, a 3, and a 21 in that order?
ii. a 32, a 3, and a 21
iii. three 1s?

b. Thinking back to the gambler’s fallacy, show that the probability of flipping twenty-
one heads in a row equals the probability of twenty heads in a row and then tails.

3. In Thunderball, one-hundred balls labelled ‘1’-‘100’ are placed into the Thundersphere
andwhirled around. Two draws are made at random in succession without replacement.
What’s the probability of:

a. drawing exactly two balls from 1-50?

b. drawing one ball from 1-50 and then two a ball from 51-100?

c. drawing at least one ball from 51-100?

3.10 Conditional Probability in Repeated Trials

In this section, we consider how to combine repeated trials with conditional probability.
We begin with independent trials and then move on to the more complex dependent
ones.

3.10.1 Conditional Probability in Independent Trials

Let’s again take coin tosses as our example. Let’s say you toss a fair coin three times and
you want to know the probability that they are all heads given that at least one of them
is.

Let V be the outcome space for a coin toss, the total outcome space will be:

V 3 = {〈H,H,H〉, 〈H,H, T 〉, 〈H,T,H〉, 〈H,T, T 〉, 〈T,H,H〉, 〈T,H, T 〉, 〈T, T,H〉, 〈T, T, T 〉}

These 8 outcomes all have equal probability: 1
8 .

We want to calculate:

Pr({〈H,H,H〉}|{〈H,H,H〉, 〈H,H, T 〉, 〈H,T,H〉, 〈H,T, T 〉, 〈T,H,H〉, 〈T,H, T 〉, 〈T, T,H〉})

From the formula for conditional probability, this value is:

Pr({〈H,H,H〉} ∩ {〈H,H,H〉, 〈H,H, T 〉, 〈H,T,H〉, 〈H,T, T 〉, 〈T,H,H〉, 〈T,H, T 〉, 〈T, T,H〉})
Pr({〈H,H,H〉, 〈H,H, T 〉, 〈H,T,H〉, 〈H,T, T 〉, 〈T,H,H〉, 〈T,H, T 〉, 〈T, T,H〉})

Notice again that the top quantity reduces to Pr({〈H,H,H〉}) = 1
8 . And this needs to be

divided by 7
8 .

1
8
7
8

=
1

7
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Suppose we now want to calculate the probability that all three tosses are heads, given
that the first is heads. In this case:

Pr({〈H,H,H〉}|{〈H,H,H〉, 〈H,H, T 〉, 〈H,T,H〉, 〈H,T, T 〉}) =
1
8
4
8

=
1

4

These results should give us pause. We have shown that the probability of tossing three
heads given that at least one is heads is 1

7 . And the probability of tossing three heads given
that the first one is heads is 1

4 . So the latter is almost twice as likely as the first. But that
seems counterintuitive: if we know that at least one coin toss is a heads, how could it
matter that the first one is heads?

Intuitively, the reason is that there are fewer outcomes in which you toss a head first
than there are outcomes in which you just toss a head in any of the three throws. To see
this, look at the calculations we made. In both cases, the numerator is the same. So our
explanation for the difference must be in the denominator, which in the first case is 7

8 and
in the second 4

8 . In the second, our value is almost half. Why is this? Remember what
this is measuring: in the first case, the number of outcomes with at least one head; in the
second, the number of outcomes with a head in first place. There are fewer of these (4
rather than 7) so they are less likely to occur.

Moral. The lesson is that conditional probabilities can often yield surprising results. It
is crucial that you apply the formula for conditional probability and don’t just offer ‘in-
tuitive’ reasoning, which is normally an utter disaster.

3.10.2 Conditional Probability in Dependent Trials

Finally, let’s consider conditional probabilities and dependent trials. And again, let’s take
card draws without replacement as our example. Suppose two cards are drawn from a
pack without replacement. Let’s calculate the probability that both are aces given that
one is an ace. Again, let’s label some events:

A := Both cards are aces.

B := At least one of the cards is an ace.

From our earlier example, we know that Pr(A) = 4×3
52×51 = 1

221 . Similarly, we know that
Pr(B) = 33

221 . We also know that A ∩B = A so:

Pr(A|B) =
Pr(A ∩B)

Pr(B)
=
Pr(A)

Pr(B)
=

1
221
33
221

=
1

33

Tip. It’s always worth looking at previous results when answering these questions. Of-
ten, earlier results will save time in answering later questions.

Now let’s calculate the probability that they are both aces given that one of them is the
ace of spades. Let:

C := One of the cards is the ace of spades.

C1 := The first card is the ace of spades (and the second is not). [51 outcomes]

C2 := The second is the ace of spades (and the first is not). [51 outcomes]
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A ∩ C1 := The first is the ace of spades; the second is another ace. [3 outcomes]

A ∩ C2 := The second is the ace of spades; the first is another ace. [3 outcomes]

We want Pr(A|C) so we need Pr(A ∩ C) and Pr(C). These are:

Pr(C) = Pr(C1) + Pr(C2) =
102

52× 51

Pr(A ∩ C) = Pr(A ∩ C1) + Pr(A ∩ C2) =
6

52× 51

Pr(A|C) = 6

102
=

1

17

Again, we might be surprised by these results. The probability that both cards are aces
given that one is the ace of spades is almost double the probability that both are aces given
that at least one is an ace. Why should this extra information be relevant? Again, condi-
tional probabilities can be surprising.

Exercises for 3.10

1. Consider again the game of roulette. Suppose you play for two spins. What’s the
probability of:

a. getting a 7 given that both spins show a number between 1-7?

b. getting 7 twice given that you get at least one 7?

c. getting 7 twice given that you get 7 second?

d. getting an 8 given that one spin shows a number between 1-7?

2. Consider again the game of Thunderball. What’s the probability of:

a. drawing exactly two balls from 1-50 given that you draw at least one from 1-50?

b. drawing exactly two balls from 1-50 given that you draw a 7?

3.11 Bayesian Epistemology

3.11.1 Subjective Probability

We have been working on the assumption that probabilities measure frequencies. We
might call such probabilities objective. Consider quantum mechanics: certain events at
this level are absolutely unpredictable. For example, a radium atommay decay in a given
interval or it may not. Decaying and non-decaying atoms cannot be distinguished: all we
can say is that any given atom has a certain probability of decaying. A radium atom has
a 50% probability of decaying over an interval of 1,602 years – the half-life of the atom.
This probability seems, in some sense, to be ‘in the world’.

On the other hand, we might take probabilities as measuring our confidence in a partic-
ular outcome. Such probabilities would be subjective.

For example, let’s say that you leave your home with your umbrella and sunglasses. Do
you think that it will rain? Well, you can’t be certain or youwouldn’t take your sunglasses.
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But then you can’t be certain that it will be sunny or you wouldn’t take your umbrella.
Rather, you have a degree of confidence, or credence, that it will rain, and a degree of confi-
dence that it will be sunny, and we can represent these using probabilities. Of course, for
most mental states this is the norm, since we aren’t certain of all that much.

The Bayesian claim is that, after you learn some new piece of evidence E, your new con-
fidence in any hypothesis is your old Pr(H|E). This is referred to as the rule of condition-
alization:

Definition. (Rule of Conditionalization)

Prnew(H) = Prold(H|E)

In other words, you should be constantly updating your confidence in hypotheses in light
of new evidence, using conditional probability.

How can we judge your degree of belief that some event will occur? An obvious sug-
gestion is observation of your behaviour. Let’s say you go to the pub, you buy two pints
and you take a seat at a table for two, checking your watch often. This all suggests that
your degree of belief that someone will be joining you is high. At the extreme end of this
thought, we could identify your belief with this behaviour. That would be a strong form
of behaviourism about the mental.

That’s all quite imprecise, so let’s focus in on a subset of your behaviours: your willing-
ness to accept betting odds. This approach to subjective probability was first offered by
Frank Ramsey in his ‘Truth and Probability’ (1926). The approach is an intuitive one: to
make your degrees of belief amenable to probabilistic treatment, we need to assign nu-
merical values to your beliefs. And betting is an areawhere people often attach numerical
values to their beliefs.

To understand this approach, it will be helpful to first have a reminder about betting
odds, for those of you who haven’t had a flutter for a while. Our standard example will
be the odds on offer at various bookies’ for Glastonbury 2021 headliners.

Skybet are offering 5/1 (pronounced ‘5 to 1’) that Paul McCartney will headline. What
does this mean? If you bet £1 and you win, you will win £6 (5 × £1 + your initial stake of
£1 back). Generally, if the odds are A/B and you win, you’ll win £A+B

B for every £1 bet.
The higher this figure – A+B

B – the better the odds. If another bookies’ were to offer, say,
4/1 on McCartney’s headlining, they would be offering worse odds.

McCartney’s odds of 5/1 are sometimes expressed as ‘5 to 1 against’, since the amount
you would win is greater than the amount staked. Intuitively, he is unlikely to headline.
I see that the odds for The Cure headlining are 1/2. Here, the second number is larger
than the first. Odds such as this are sometimes expressed as ‘2 to 1 on’ since the amount
you would win is less than the amount staked (here, for every £1 staked, you win 50p).
Intuitively, The Cure are likely to headline.

The credence that you have in event E is determined by the worst odds that you would
accept, at least for small stakes. Let’s say I believe that Lady Gaga will headline Glaston-
bury. How confident am I? About 80%. If your credence inE is B

A+B , then the worst odds
you will be prepared to accept on E are A/B. So the worst odds I would accept on Lady
Gaga headlining are 1/4.

49



If a bookies’ were offering 1/10 on Lady Gaga headlining, I wouldn’t take the bet, since
those areworse odds than 1/4. 1/10 represents a credence of about 90%, andmy credence
isn’t that high. If another bookies’ were offering 1/3 on Lady Gaga headlining, which
represents a credence of 75%, I would take the bet, since my credence is higher.

This all makes intuitive sense: if you are certain that E will happen, you will accept any
odds A/B (however small A is, as long as A > 0). And if you are certain that E won’t
happen, then you won’t accept any odds A/B (however small B is, as long as B > 0).

3.11.2 Dutch Books

If we interpret the probability calculus subjectively, using betting odds, then the Kol-
mogorov axioms have a rational compulsion. It turns out that, if your reasoning fails to
conform to any one of them, you will accept a bet that you are guaranteed to lose. To see
this we need to first discuss the notion of aDutch book, which we’ll introduce by example.

Let’s say it’s the final of Rupaul’s Drag Race and one of three queens will win: Alaska,
Roxxy and Jinkx. You discover that Ladbroke’s is offering 3/1 on Alaska, 3/1 on Roxxy
and 3/1 on Jinkx. What should you do? You should take every penny you have and put
1
3 of your money on each: you are bound to win. Why? Let’s say you start with £3 and put
£1 on each. If Alaska wins, you’ll get £4 back; if Roxxy wins, you’ll get £4 back; if Jinkx
wins, you’ll get £4 back. And one of themwill win so, in any case, you end up with more
than you started.

The bookies is bound to lose. Of course, no actual bookies would set up such odds and
guarantee that they lose money. (Although, apparently, such situations can arise in inter-
national sport.) If you accept betting odds that guarantee that you’ll lose money, we say
that you’re open to aDutch book. In this example, the bookies is open to a Dutch book. But
of course bettors themselves can also be open to Dutch books, if they accept the wrong
odds.

If our credences fail to conform to the axioms of probability theory, we leave ourselves
open to Dutch books. Let’s say I have a credence of 60% that it will snow tomorrow.
And I also have a credence of 60% that it won’t snow tomorrow. This plainly violates the
probabilisitic theorem we proved that Pr(X) + Pr(X) = 1. And I am open to a Dutch
book: 60% credence shows that I’d accept odds of 2/3 that it will snow tomorrow and
odds of 2/3 that it won’t.

Let’s say that I start out with £6 and I put £3 on each outcome. It will either snow or
not snow, so I’ll lose one of the bets and win the other. The one I lose will cost me £3.
The one I win will give me £5. So I end up with £5 – overall, I’ve lost £1. A Dutch book
can be made against you if, and only if, your credences fail to conform to the axioms of
probability.

This is all very exciting but it’s important to note some of the idealisations being made
here. We are assuming that, for any person S at any time t and for any outcome E,
there will be a number between 0 and 1 that represents S’s credence in E at t. There are
obvious counterexamples to be had: some outcomes we obviously haven’t entertained.
But, even in the cases we have considered, is it plausible that we can quantify credences
in this way? Or are the idealisations involved so great that they shed little light on actual
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human behaviour? Questions for another time but, if you’re interested, I recommend
starting with Ramsey’s ‘Truth and Probability’.

3.11.3 Expected Utility

In principle, any action can be construed as a sort of gamble. Suppose you decided
(wisely) to revise the material on functions before your exams. So presumably your cre-
dence that the material on functions will be on the exam was greater than your belief it
wouldn’t be. Your credences in the exam happening were presumably also very high.
You weren’t certain: the exam could have been cancelled and you could have missed the
message, but that’s unlikely.

In general, when someone performs an action, the expected utility of that action is greater
than other actions. A very famous example of expected utility is Pascal’s wager. Let’s
say that your credence in the existence of God is 1%. If you are correct that God doesn’t
exist, you’ll take some pleasure in being correct. Let’s say this has positive utility 10. If
God exists, though, and you don’t believe in Her, you’ll suffer eternal damnation. Let’s
say this has negative utility 1M.

How about if you do believe in God? Well, if She exists, you’ll enjoy eternal happiness.
Let’s say this has positive utility 1M. And if you believe and She doesn’t exists, you’ll take
some displeasure in being wrong, say negative utility 10.

We can helpfully display these data in a table:

B B

G +1M -1M
G -10 +10

And we’ve said that Pr(G) = 0.01 and Pr(G) = 0.99. The expected utility of believing
in God is (1M × 0.01) + (−10 × 0.99) = 9, 990.1. The expected utility of not believing is
(−1M × 0.01) + (10× 0.99) = −9990.1. So you should believe in God.
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4 Solutions

4.1 Exercises for 1.1-1.2

1. Are the following claims true, false, or ill-formed?

a. 0 ∈ {0, 1, 2} True

b. 0 ∈ {1, 2} False

c. 0 ∈ {{0}} False

d. 0 ∈ 0 Ill-formed

e. 0 ∈ ∅ False

2. Write down the following claims in our notation. Are the they true, false, or ill-formed?

a. The number 2 is a member of the set containing exactly Jack and Jill.

2 ∈ {Jack, Jill}, False

b. The empty set is a member of the number 2.

∅ ∈ 2, Ill-formed

c. The number 2 is a member of the set containing exactly the empty set and the num-
ber 2.

2 ∈ {∅, 2}, True

4.2 Exercises for 1.3

1. Why is the set {The Prime Minister on 10 February 2020, Jeremy Corbyn} identicalwith
the set {Boris Johnson, Jeremy Corbyn}? What does this tell us about how we describe
sets?

Boris Johnson is The PrimeMinister on 10 February 2020, so by Extensionality these sets
are one and the same. Thus, one and the same set may be described in different ways.

2. Use Extensionality to argue that there is only one set which contains exactly the empty
set.

If S and S′ both contain exactly the empty set, then they have exactly the same members.
After all, there is only one empty set, by Extensionality. So, again by Extensionality, S
and S′ are one and the same.

3.∗ If we enrich the language of first-order logic (with identity) with the predicate ‘∈’ and
the name ‘∅’ for the empty set, then we can define the predicate ‘Set’. How?

Set(x) := x = ∅ ∨ ∃y(y ∈ x)
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4.3 Exercises for 1.4

1. Using our notation, write down the claim that the number zero is not a member of the
set of all humans.

0 6∈ {x : x is human}

2. Using our notation, redescribe the set {∅}.

{x : x = ∅}

3. Using our notation, redescribe ∅.

{x : x 6= x}

4. Write out in our formal language the claim that everything is the one and onlymember
of its singleton.

∀x(x ∈ {x} ∧ ∀z(z ∈ {x} → x = z))

4.4 Exercises for 1.5

1. Define the proper superset relation.

S ⊃ S′ := S ⊇ S′ ∧ S′ 6⊇ S

2. Show that if S1 ⊆ S2 and S2 ⊆ S3, then S1 ⊆ S3.

Suppose that S1 ⊆ S2 and S2 ⊆ S3. For arbitrary x, if x ∈ S1 then x ∈ S2 since S1 ⊆ S2.
Yet if x ∈ S2 then x ∈ S3 since S2 ⊆ S3. Thus, if x ∈ S1 then x ∈ S3, so S1 ⊆ S3.

3. Let A = {0, 1} and B = {0, 1, 2, 3}. Are the following claims true, false, of ill-formed?

a. A ⊆ B True

b. A ⊂ B True

c. A ∈ B False

d. 0 ∈ A True

e. 0 ⊆ B Ill-formed

4.5 Exercises for 1.6

1. Show that S ∪ S is just S.

x ∈ (S ∪ S) ↔ x ∈ S ∨ x ∈ S Def. ∪

↔ x ∈ S PL

Like the examples in the lecture notes, the line justified by PL uses a tautology of propo-
sitional logic: (A ∨A)↔ A.

2. Show that S ∩ ∅ is just ∅.

(S ∩ ∅) = {x : x ∈ S ∧ x ∈ ∅} = ∅
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3. Show that if S and S′ are disjoint and S′ is non-empty, then S ⊂ (S ∪ S′).

Clearly, S ⊆ (S ∪ S′). To show that S ⊂ (S ∪ S′), notice that S and S′ are disjoint and S′
is non-empty, so there is at least one thing x ∈ S′ such that x 6∈ S. Thus, x ∈ (S ∪S′), but
x 6∈ S. Hence, S ⊂ (S ∪ S′).

4. Show that (S1 ∪ (S2 ∩ S3)) = ((S1 ∪ S2) ∩ (S1 ∪ S3))

x ∈ (S1 ∪ (S2 ∩ S3)) iff x ∈ S1 or x ∈ (S2 ∩ S3) Def. ∪

iff x ∈ S1 or (x ∈ S2 andx ∈ S3) Def. ∩

iff (x ∈ S1 orx ∈ S2) and (x ∈ S1 orx ∈ S3) PL

iff x ∈ (S1 ∪ S2) and x ∈ (S1 ∪ S3) Def. ∪

iff x ∈ ((S1 ∪ S2) ∩ (S1 ∪ S3)) Def. ∩

Like the examples in the lecture notes, the line justified by PL uses a tautology of propo-
sitional logic: (A ∨ (B ∧ C))↔ ((A ∨B) ∧ (A ∨ C)).

4.6 Exercises for 1.7

1. Show that (S − (S ∩ S′)) = S − S′.

x ∈ (S − (S ∩ S′)) iff x ∈ S and x 6∈ (S ∩ S′) Def. −

iff x ∈ S and not: (x ∈ S and x ∈ S′) Def. ∩

iff x ∈ S and x 6∈ S′ PL

iff x ∈ (S − S′) Def. −

2. Show that ((S ∪ S′)− (S ∩ S′)) = ((S − S′) ∪ (S′ − S)).

x ∈ ((S ∪ S′)− (S ∩ S′)) iff x ∈ (S ∪ S′) ∧ x 6∈ (S ∩ S′) Def. −

iff (x ∈ S ∨ x ∈ S′) ∧ ¬(x ∈ S ∧ x ∈ S′) Defs. ∪,∩

iff (x ∈ S ∧ x 6∈ S′) ∨ (x ∈ S′ ∧ x 6∈ S) PL

iff (x ∈ (S − S′)) ∨ (x ∈ (S′ − S)) Def. −

iff x ∈ ((S − S′) ∪ (S′ − S)) Def. ∪

Like the examples in the lecture notes, the line justified by PL uses a tautology of propo-
sitional logic: ((A ∧ ¬B) ∨ (B ∧ ¬A))↔ ((A ∨B) ∧ ¬(A ∧B)).

3. Show that ((S ∪ S′)− (S ∩ S′)) = (S ∪ S′) when S and S′ are disjoint.

Since S and S′ are disjoint, (S − S′) = S and (S′ − S) = S′. Thus, ((S − S′)∪ (S′ − S)) =
(S ∪ S′), and so by Exercise 1.7.2, ((S ∪ S′)− (S ∩ S′)) = (S ∪ S′).
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4.7 Exercises for 1.8

1. Is any set its own power set?

No: the cardinality of a power set is always greater than the cardinality of the set in
question.

2. Define P(S) ∪ S using our notation for describing sets.

{x : x ⊆ S ∨ x ∈ S}

3. Show that P(S ∩ (S − S)) ⊆ P(S′).

If x ∈ P(S ∩ (S − S)) then x ∈ P(S ∩ ∅) Def. −

then x ∈ P(∅) Def. ∩

then x = ∅ Def. P

then x ∈ P(S′), for any set S′ Def. P

4.8 Exercises for 1.9

1. Let A = {a}, B = {b, c}, and C = {d}. Calculate the following.

i. A×B

{〈a, b〉, 〈a, c〉}

ii. P(A)×B

{〈{a}, b〉, 〈{a}, c〉, 〈∅, b〉, 〈∅, c〉}

iii. P(A× C)

{∅, {〈a, d〉}}

2. Calculate ∅2.

∅2 = ∅ × ∅ = {〈x, y〉 : x ∈ ∅ ∧ y ∈ ∅} = ∅

3. Define the set (A × B) ∩ (A × A). Assuming A and B are non-empty, under which
conditions is (A×B) ∩ (A×A) non-empty?

{〈x, y〉 : x ∈ A ∧ y ∈ (A ∩B)}. It is non-empty when A and B are not disjoint.

4.9 Exercises for 1.10

1. Let A = {1, 2}. Calculate the following.

i. |A− {2}|

|A− {2}| = 1

ii. |A× (A− {2})|

|A× (A− {2})| = 1
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iii. |P(A)|

|P(A)| = 4

4.10 Exercises for 2.1

1. If x, y ∈ S, then specify a set S′ in terms of S such that 〈x, y〉 ∈ S′.

{〈x, y〉 : x, y ∈ S}

4.11 Exercises for 2.2-2.3

1. Consider any set S and any binary relation which is not reflexive on S. Specify a
condition on S which guarantees that the relation is also irreflexive on S.

S is a singleton set.

2. Let S 6= ∅. Show that ∅ is not reflexive on S.

Since S 6= ∅, there is some x ∈ S. Yet of course 〈x, x〉 6∈ ∅.

3. Let S = {1, 2, 3} and let R = {〈1, 2〉, 〈2, 3〉, 〈3, 2〉}.

a. Is R reflexive on S? No

b. Is R symmetric on S? No

c. Is R anti-symmetric on S? No

d. Define a relation R′ such that R ⊆ R′ and R′ is transitive on S. Must R′ be an
equivalence relation on S? No. Consider: R ∪ {〈2, 2〉, 〈3, 3〉, 〈1, 3〉}

e. Is R− {〈3, 2〉} anti-symmetric on S? Yes

4. Show that every relation which is asymmetric on a set is also anti-symmetric on that
set.

A relation R is asymmetric on a set S iff for any x, y ∈ S, if 〈x, y〉 ∈ R then 〈y, x〉 6∈ R.
Thus, if x 6= y, then it’s still the case that if 〈x, y〉 ∈ R then 〈y, x〉 6∈ R.

5. A relation is anti-transitive on a set S iff for every x, y, z ∈ S, if 〈x, y〉 ∈ R and 〈y, z〉 ∈ R,
then 〈x, z〉 6∈ R.

a. Write out the definition of anti-transitivity on a set in our formal language of set
theory.

∀x∀y∀z(Rxy ∧Ryz → ¬Rxz)

b. Can a relation be both reflexive and anti-transitive on a single non-empty set? Sub-
stantiate your answer.

LetS be any non-empty set andR any reflexive relation onS. SinceS is non-empty,
there is some d ∈ S such that 〈d, d〉 ∈ R. Yet that constitutes a counterexample to
anti-transitivity (just assign d as the value of all of the variables x, y, z).
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c. Provide two examples of a pair of a relation and a set such that the relation is both
transitive and anti-transitive on a that set.

The empty relation on a non-empty set. Any relation on empty set.

6. Let S be the set of natural numbers. Let 〈x, y〉 ∈ R iff x + 1 = y. Show that R is a
function on S.

Clearly, for any natural number n there is only one natural numberm = n+ 1. Thus, for
each natural number n there is only one natural numberm such that 〈n,m〉 ∈ R. So R is
a function on S.

4.12 Exercises for 2.5

1. In our formal language, write ‘FuncS(R)’ to abbreviate the formula thatR is a function
on S, i.e. ∀x∀y∀z((x ∈ S ∧ y ∈ S ∧ z ∈ S) → ((Rxy ∧ Rxz) → y = z)). Using this
abbreviation write out the following claims in the language:

a. R is function on S which is a surjection into S′.

FuncS(R) ∧ ∀x(x ∈ S′ → ∃y(y ∈ S ∧Ryx))

b. R is function on S which is an injection into S′.

FuncS(R) ∧ ∀x∀y((x ∈ S ∧ y ∈ S ∧ x 6= y)→ (Rxz1 ∧Ryz2 → z1 6= z2)))

2. Let F : S → S′ be such that S′ just is the range of F .

a. Must F be an injection into S′?

No. Let F be a function on the set of natural numbers defined as follows:

F (n) =

{
n, if n is even
n− 1, is n is odd

0 1 2 3

0 2

The range of F is the set of even numbers, but F isn’t an injection from the natural
numbers into the set of even numbers.

b. Must F be a surjection into S′?

Yes, since S′ = ran(F ).

Substantiate each answer with either a counterexample or a proof.

3. Let F1 : S → S′ and F2 : S → S′ with the range of F1 disjoint from the range of F2.
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a. If F1 and F2 are both injections into S′, must F1 ∪ F2 also be an injection into S′?

Actually, there’s no guarantee that F1 ∪ F2 is even a function into S′. Consider the
following counterexample:

S = {0}
S′ = {1, 2}
F1 = {〈0, 1〉}
F2 = {〈0, 2〉}
F1 ∪ F2 = {〈0, 1〉, 〈0, 2〉}

b. Can either F1 or F2 be a surjection into S′?

Yes. Consider the following example:

S = {0}
S′ = {1}
F1 = {}
F2 = {〈0, 1〉}

F1 is the empty relation (which is an injective function on any set), and ran(F2) = S′.
Since F1 is the empty relation, ran(F1) is disjoint from ran(F2).

4. Verify that the function F (x) = 2x from the set of natural numbers into the set of even
natural numbers is indeed a one-one correspondence between these sets.

F is an injection, since if F (x) = F (y) then 2x = 2y and so x = y. Similarly, F is a
surjection, since for every even number n there is some natural numberm such that n =
2m.

4.13 Exercises for 2.6

1. Choose an example of a function F from a set S into a set S′ such that its converse is
not a function from S′ into S.

Consider the following counterexample:

S = {0, 1}

S′ = {2}

F = {〈0, 2〉, 〈1, 2〉}

Since F isn’t an injection into S′, the converse of F isn’t even a function into S.

2. Let F be an injection from S into S′. Show that its converse is a function from S′ into
S.

Let’s write F ′ for the converse of F . Suppose that 〈x, y〉 ∈ F ′ and 〈x, z〉 ∈ F ′. Then
x = F (y) and x = F (z) by the definition of a converse. Yet F is an injection into S, so
y = z.
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4.14 Exercises for 2.7

1. On the set of all people ever, determine whether the relation x is Frege or y is Russell is
reflexive, whether it is symmetric and whether it is transitive.

It’s neither reflexive nor symmetric on that set, but it is transitive on that set.

2. Say that a binary relationR is Euclidean on a set just if for every x, y, z ∈ S, if 〈x, y〉 ∈ S
and 〈x, z〉 ∈ S, then 〈y, z〉 ∈ S. On the set of living people, is the relation x loves y only if
y loves x:

a. reflexive? Yes

b. symmetric? No

c. transitive? No

d. Euclidean? No
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